Generalized trend constants of Lipschitz mappings
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 2.

Voir la notice de l'article provenant de la source Library of Science

In 2015, Goebel and Bolibok defined the initial trend coefficient of a mapping and the class of initially nonexpansive mappings. They proved that the fixed point property for nonexpansive mappings implies the fixed point property for initially nonexpansive mappings. We generalize the above concepts and prove an analogous fixed point theorem. We also study the initial trend coefficient more deeply.
Keywords: Banach space, Lipschitz mapping, fixed point
@article{AUM_2018_72_2_a0,
     author = {Szczepanik, Mariusz},
     title = {Generalized trend constants of {Lipschitz} mappings},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a0/}
}
TY  - JOUR
AU  - Szczepanik, Mariusz
TI  - Generalized trend constants of Lipschitz mappings
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2018
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a0/
LA  - en
ID  - AUM_2018_72_2_a0
ER  - 
%0 Journal Article
%A Szczepanik, Mariusz
%T Generalized trend constants of Lipschitz mappings
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2018
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a0/
%G en
%F AUM_2018_72_2_a0
Szczepanik, Mariusz. Generalized trend constants of Lipschitz mappings. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 2. http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a0/

[1] Bolibok, K., Goebel, K., Trend constants for Lipschitz mappings, Fixed Point Theory 16 (2015), 215-224.

[2] Da Prato, G., Zabczyk, J., Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.

[3] Goebel, K., Minimal displacement and trend constants for Lipschitz mappings, in: Proceedings of the 9th International Conference on Nonlinear Analysis and Convex Analysis, (2016), 111-121.

[4] Ioffe, A. D., Tihomirov, V. M., Theory of Extremal Problems, North-Holland, Amsterdam, 1979.

[5] Sato, K., On the generators of non-negative contraction semi-groups in Banach lattices, J. Math. Soc. Japan 20 (1968), 423-436.