Oscillation of third-order delay difference equations with negative damping term
Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 72 (2018) no. 1

Voir la notice de l'article provenant de la source Library of Science

The aim of this paper is to investigate the oscillatory and asymptotic behavior of solutions of a third-order delay difference equation. By using comparison theorems, we deduce oscillation of the difference equation from its relation to certain associated first-order delay difference equations or inequalities. Examples are given to illustrate the main results.
Keywords: Third-order delay difference equation, comparison theorems, oscillation, asymptotic behavior
@article{AUM_2018_72_1_a4,
     author = {Bohner, Martin and Geetha, Srinivasan and Selvarangam, Srinivasan and Thandapani, Ethiraju},
     title = {Oscillation of third-order delay difference equations with negative damping term},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a4/}
}
TY  - JOUR
AU  - Bohner, Martin
AU  - Geetha, Srinivasan
AU  - Selvarangam, Srinivasan
AU  - Thandapani, Ethiraju
TI  - Oscillation of third-order delay difference equations with negative damping term
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica
PY  - 2018
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a4/
LA  - en
ID  - AUM_2018_72_1_a4
ER  - 
%0 Journal Article
%A Bohner, Martin
%A Geetha, Srinivasan
%A Selvarangam, Srinivasan
%A Thandapani, Ethiraju
%T Oscillation of third-order delay difference equations with negative damping term
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica
%D 2018
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a4/
%G en
%F AUM_2018_72_1_a4
Bohner, Martin; Geetha, Srinivasan; Selvarangam, Srinivasan; Thandapani, Ethiraju. Oscillation of third-order delay difference equations with negative damping term. Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 72 (2018) no. 1. http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a4/

[1] Agarwal, R. P., Difference Equations and Inequalities. Theory, Methods, and Applications, Marcel Dekker, Inc., New York, 2000.

[2] Agarwal, R. P., Bohner, M., Grace, S. R., O’Regan, D., Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005.

[3] Agarwal R. P., Grace, S. R., Oscillation of certain third-order difference equations, Comput. Math. Appl. 42 (3-5) (2001), 379-384,

[4] Agarwal, R. P., Grace, S. R., O’Regan, D., On the oscillation of certain third-order difference equations, Adv. Difference Equ. 3 (2005), 345-367.

[5] Aktas, M. F., Tiryaki, A., Zafer, A., Oscillation of third-order nonlinear delay difference equations, Turkish J. Math. 36 (3) (2012), 422-436.

[6] Bohner, M., Dharuman, C., Srinivasan, R., Thandapani, E., Oscillation criteria for third-order nonlinear functional difference equations with damping, Appl. Math. Inf. Sci. 11 (3) (2017), 669-676.

[7] Grace, S. R., Agarwal, R. P., Graef J. R., Oscillation criteria for certain third order nonlinear difference equations, Appl. Anal. Discrete Math. 3 (1) (2009), 27-38.

[8] Graef, J. R., Thandapani, E., Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funkcial. Ekvac. 42 (3) (1999), 355-369.

[9] Gyori, I., Ladas, G., Oscillation Theory of Delay Differential Equations. With Applications, The Clarendon Press, Oxford University Press, New York, 1991,

[10] Parhi, N., Panda, A., Oscillatory and nonoscillatory behaviour of solutions of difference equations of the third order, Math. Bohem. 133 (1) (2008), 99-112.

[11] Saker, S. H., Alzabut, J. O., Mukheimer, A., On the oscillatory behavior for a certain class of third order nonlinear delay difference equations, Electron. J. Qual. Theory Differ. Equ. 67 (2010), 16 pp.

[12] Smith, B., Oscillation and nonoscillation theorems for third order quasi-adjoint difference equations, Portugal. Math. 45 (3) (1988), 229-243.

[13] Smith, B., Taylor, Jr., W. E., Nonlinear third-order difference equations: oscillatory and asymptotic behavior, Tamkang J. Math. 19 (3) (1988), 91-95.

[14] Tang, X., Liu, Y., Oscillation for nonlinear delay difference equations, Tamkang J. Math. 32 (4) (2001), 275-280.

[15] Thandapani, E., Mahalingam, K., Oscillatory properties of third order neutral delay difference equations, Demonstratio Math. 35 (2) (2002), 325-337.

[16] Thandapani, E., Pandian, S., Balasubramaniam, R. K., Oscillatory behavior of solutions of third order quasilinear delay difference equations, Stud. Univ. Zilina Math. Ser. 19 (1) (2005), 65-78.

[17] Thandapani, E., Selvarangam, S., Oscillation theorems for second order quasilinear neutral difference equations, J. Math. Comput. Sci. 2 (4) (2012), 866-879.