Properties of modulus of monotonicity and Opial property in direct sums
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 2.

Voir la notice de l'article provenant de la source Library of Science

We give an example of a Banach lattice with a non-convex modulus of monotonicity, which disproves a claim made in the literature. Results on preservation of the non-strict Opial property and Opial property under passing to general direct sums of Banach spaces are established.
Keywords: Banach lattice, modulus of monotonicity, direct sum, non-strict Opial property, Opial property
@article{AUM_2017_71_2_a5,
     author = {Markowicz, Joanna and Prus, Stanis{\l}aw},
     title = {Properties of modulus of monotonicity and {Opial} property in direct sums},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a5/}
}
TY  - JOUR
AU  - Markowicz, Joanna
AU  - Prus, Stanisław
TI  - Properties of modulus of monotonicity and Opial property in direct sums
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2017
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a5/
LA  - en
ID  - AUM_2017_71_2_a5
ER  - 
%0 Journal Article
%A Markowicz, Joanna
%A Prus, Stanisław
%T Properties of modulus of monotonicity and Opial property in direct sums
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2017
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a5/
%G en
%F AUM_2017_71_2_a5
Markowicz, Joanna; Prus, Stanisław. Properties of modulus of monotonicity and Opial property in direct sums. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 2. http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a5/

[1] Day, M. M., Normed Linear Spaces, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1962.

[2] Hardtke, J.-D., WORTH property, Garcıa-Falset coefficient and Opial property of infinite sums, Comment. Math. 55 (2015), 23-44.

[3] Kirk, W. A., Sims, B. (eds.), Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001.

[4] Kutzarova, D., Landes, T., Nearly uniform convexity of infinite direct sums, Indiana Univ. Math. J. 41, No. 4 (1992), 915-926.

[5] Kurc, W., A dual property to uniform monotonicity in Banach lattices, Collect. Math. 44 (1993), 155-165.

[6] Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces II, Springer-Verlag, New York, 1979.

[7] Meyer-Nieberg, P., Banach Lattices, Springer-Verlag, Berlin, 1991.

[8] Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.