@article{AUM_2017_71_2_a5,
author = {Markowicz, Joanna and Prus, Stanis{\l}aw},
title = {Properties of modulus of monotonicity and {Opial} property in direct sums},
journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica},
year = {2017},
volume = {71},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a5/}
}
TY - JOUR AU - Markowicz, Joanna AU - Prus, Stanisław TI - Properties of modulus of monotonicity and Opial property in direct sums JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2017 VL - 71 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a5/ LA - en ID - AUM_2017_71_2_a5 ER -
Markowicz, Joanna; Prus, Stanisław. Properties of modulus of monotonicity and Opial property in direct sums. Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 71 (2017) no. 2. http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a5/
[1] Day, M. M., Normed Linear Spaces, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1962.
[2] Hardtke, J.-D., WORTH property, Garcıa-Falset coefficient and Opial property of infinite sums, Comment. Math. 55 (2015), 23-44.
[3] Kirk, W. A., Sims, B. (eds.), Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001.
[4] Kutzarova, D., Landes, T., Nearly uniform convexity of infinite direct sums, Indiana Univ. Math. J. 41, No. 4 (1992), 915-926.
[5] Kurc, W., A dual property to uniform monotonicity in Banach lattices, Collect. Math. 44 (1993), 155-165.
[6] Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces II, Springer-Verlag, New York, 1979.
[7] Meyer-Nieberg, P., Banach Lattices, Springer-Verlag, Berlin, 1991.
[8] Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.