The natural operators of general affine connections into general affine connections
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 1.

Voir la notice de l'article provenant de la source Library of Science

We reduce the problem of describing all ℳ f_m-natural operators  transforming general affine connections on m-manifolds into general affine ones to the known description of all GL(𝐑^m)-invariant maps 𝐑^m*⊗𝐑^m→⊗^k𝐑^m*⊗⊗ ^k𝐑^m for k=1,3.
Keywords: General affine connection, natural operator
@article{AUM_2017_71_1_a6,
     author = {Kurek, Jan and Mikulski, W{\l}odzimierz M.},
     title = {The natural operators of general affine connections into general affine connections},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a6/}
}
TY  - JOUR
AU  - Kurek, Jan
AU  - Mikulski, Włodzimierz M.
TI  - The natural operators of general affine connections into general affine connections
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2017
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a6/
LA  - en
ID  - AUM_2017_71_1_a6
ER  - 
%0 Journal Article
%A Kurek, Jan
%A Mikulski, Włodzimierz M.
%T The natural operators of general affine connections into general affine connections
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2017
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a6/
%G en
%F AUM_2017_71_1_a6
Kurek, Jan; Mikulski, Włodzimierz M. The natural operators of general affine connections into general affine connections. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 1. http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a6/

[1] Debecki, J., The natural operators transforming affinors to tensor fields of type (3, 3), Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 39 (2000), 37-49.

[2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley-Interscience, New York–London, 1963.

[3] Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry,

[4] Springer-Verlag, Berlin, 1993.