The natural operators of general affine connections into general affine connections
Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 71 (2017) no. 1
Voir la notice de l'article provenant de la source Library of Science
We reduce the problem of describing all ℳ f_m-natural operators transforming general affine connections on m-manifolds into general affine ones to the known description of all GL(𝐑^m)-invariant maps 𝐑^m*⊗𝐑^m→⊗^k𝐑^m*⊗⊗ ^k𝐑^m for k=1,3.
Keywords:
General affine connection, natural operator
@article{AUM_2017_71_1_a6,
author = {Kurek, Jan and Mikulski, W{\l}odzimierz M.},
title = {The natural operators of general affine connections into general affine connections},
journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica},
publisher = {mathdoc},
volume = {71},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a6/}
}
TY - JOUR AU - Kurek, Jan AU - Mikulski, Włodzimierz M. TI - The natural operators of general affine connections into general affine connections JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2017 VL - 71 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a6/ LA - en ID - AUM_2017_71_1_a6 ER -
%0 Journal Article %A Kurek, Jan %A Mikulski, Włodzimierz M. %T The natural operators of general affine connections into general affine connections %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2017 %V 71 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a6/ %G en %F AUM_2017_71_1_a6
Kurek, Jan; Mikulski, Włodzimierz M. The natural operators of general affine connections into general affine connections. Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 71 (2017) no. 1. http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a6/
[1] Debecki, J., The natural operators transforming affinors to tensor fields of type (3, 3), Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 39 (2000), 37-49.
[2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley-Interscience, New York–London, 1963.
[3] Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry,
[4] Springer-Verlag, Berlin, 1993.