Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2017_71_1_a0, author = {Jasi\'nska, Dominika}, title = {A spatial individual-based contact model with age structure}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {71}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a0/} }
Jasińska, Dominika. A spatial individual-based contact model with age structure. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 1. http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a0/
[1] Berns, Ch., Kondratiev, Y., Kozitsky, Y., Kutoviy, O., Kawasaki dynamics in continuum: micro- and mesoscopic descriptions, J. Dynam. Differential Equations 25 (4) (2013), 1027-1056.
[2] Bogoliubov, N., Problems of a Dynamical Theory in Statistical Physics, Gostekhisdat, Moscow, 1946 (in Russian). English translation, in: J. de Boer and G. E. Uhlenbeck (editors), Studies in Statistical Mechanics, Volume 1, 1-118, North-Holland, Amsterdam, 1962.
[3] Daletskii, A., Kondratiev, Y., Kozitsky, Y., Phase transitions in continuum ferromagnets with unbounded spins, J. Math. Phys. 56 (11) (2015), 1-20.
[4] Finkelshtein, D., Kondratiev, Y., Oliveira, M., Markov evolutions and hierarchical equations in the continuum I. One-component systems, J. Evol. Equ. 9 (2) (2009), 197-233.
[5] Iannelli, M., Mathematical theory of age-structured population dynamics, Applied Mathematics Monographs, Giardini Editori e Stampatori, Pisa, 1995.
[6] Kondratiev, Y., Kuna, T., Harmonic analysis on configuration space. I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2) (2002), 201-233.
[7] Kondratiev, Y., Kutoviy, O., Pirogrov, S., Correlation functions and invariant measures in continuous contact model, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2) (2008), 231-258.
[8] Kondratiev, Y., Lytvynov, E., Us, G., Analysis and geometry on \(\mathbb{R}_+\) marked configuration spaces, Meth. Func. Anal. and Geometry 5 (1) (2006), 29-64.
[9] Meleard, S., Tran, V., Trait substitution sequence process and canonical equation for age-structured populations, J. Math. Biol. 58 (6) (2009), 881-921.
[10] Meleard, S., Tran, V., Slow and fast scales for superprocess limits of age-structured populations, Stochastic Process. Appl. 122 (1) (2012), 250-276.
[11] Minlos, R. A., Lectures on statistical physics, Russian Mathematical Surveys 23 (1) (1968), 133-190.
[12] Tanaś, A., A continuum individual based model of fragmentation: dynamics of correlation functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 64 (2) (2015), 73-83.