On compactness and connectedness of the paratingent
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 70 (2016) no. 2.

Voir la notice de l'article provenant de la source Library of Science

In this note we shall prove that for a continuous function φ : Δ→ℝ^n, where Δ⊂ℝ,  the paratingent of φ at a∈Δ is a non-empty and compact set in ℝ^n if and only if φ satisfies Lipschitz condition in a neighbourhood of a. Moreover, in this case the paratingent is a connected set.
@article{AUM_2016_70_2_a5,
     author = {Zygmunt, Wojciech},
     title = {On compactness and connectedness of the paratingent},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a5/}
}
TY  - JOUR
AU  - Zygmunt, Wojciech
TI  - On compactness and connectedness of the paratingent
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2016
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a5/
LA  - en
ID  - AUM_2016_70_2_a5
ER  - 
%0 Journal Article
%A Zygmunt, Wojciech
%T On compactness and connectedness of the paratingent
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2016
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a5/
%G en
%F AUM_2016_70_2_a5
Zygmunt, Wojciech. On compactness and connectedness of the paratingent. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 70 (2016) no. 2. http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a5/

[1] Aubin, J. P., Frankowska, H., Set-Valued Analysis, Birkhauser, Boston, Massachusetts, 1990.

[2] Bielecki, A., Sur certaines conditions necessaires et suffisantes pour l’unicite des solutions des systemes d’equations differentielles ordinaires et des equations au paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 2 (1948), 49-106.

[3] Bouligand, G., Introduction a la geometrie infinitesimale directe, Vuibert, Paris, 1932.

[4] Choquet, G., Outils topologiques et metriques de l’analyse mathematique, Centre de Documentation Univ., Course redige par C. Mayer, Paris, 1969.

[5] Fedor, M., Szyszkowska, J., Darboux properties of the paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 67-74.

[6] Mirica, S., The contingent and the paratingent as generalized derivatives for vectorvalued and set-valued mappings, Nonlinear Anal. 6 (1982), 1335-1368.