Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2016_70_2_a5, author = {Zygmunt, Wojciech}, title = {On compactness and connectedness of the paratingent}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {70}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a5/} }
Zygmunt, Wojciech. On compactness and connectedness of the paratingent. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 70 (2016) no. 2. http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a5/
[1] Aubin, J. P., Frankowska, H., Set-Valued Analysis, Birkhauser, Boston, Massachusetts, 1990.
[2] Bielecki, A., Sur certaines conditions necessaires et suffisantes pour l’unicite des solutions des systemes d’equations differentielles ordinaires et des equations au paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 2 (1948), 49-106.
[3] Bouligand, G., Introduction a la geometrie infinitesimale directe, Vuibert, Paris, 1932.
[4] Choquet, G., Outils topologiques et metriques de l’analyse mathematique, Centre de Documentation Univ., Course redige par C. Mayer, Paris, 1969.
[5] Fedor, M., Szyszkowska, J., Darboux properties of the paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 67-74.
[6] Mirica, S., The contingent and the paratingent as generalized derivatives for vectorvalued and set-valued mappings, Nonlinear Anal. 6 (1982), 1335-1368.