Connections from trivializations
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 70 (2016) no. 2.

Voir la notice de l'article provenant de la source Library of Science

Let P be a principal fiber bundle with the basis M and with the structural group G. A trivialization of P is a section of P. It is proved that there exists only one gauge natural operator transforming trivializations of P into principal connections in P. All gauge natural operators transforming trivializations of P and torsion free classical linear connections on M into classical linear connections on P are completely described.
Keywords: Gauge natural bundle, gauge natural operator, principal connection
@article{AUM_2016_70_2_a1,
     author = {Kurek, Jan and Mikulski, W{\l}odzimierz},
     title = {Connections from trivializations},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a1/}
}
TY  - JOUR
AU  - Kurek, Jan
AU  - Mikulski, Włodzimierz
TI  - Connections from trivializations
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2016
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a1/
LA  - en
ID  - AUM_2016_70_2_a1
ER  - 
%0 Journal Article
%A Kurek, Jan
%A Mikulski, Włodzimierz
%T Connections from trivializations
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2016
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a1/
%G en
%F AUM_2016_70_2_a1
Kurek, Jan; Mikulski, Włodzimierz. Connections from trivializations. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 70 (2016) no. 2. http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a1/

[1] Dębecki, J., Affine liftings of torsion-free connections to Weil bundles, Colloq. Math. 114 (1) (2009), 1-8.

[2] Doupovec, M., Mikulski, W. M., Reduction theorems for principal and classical connections, Acta Math. Sinica (E-S) 26 (1) (2010), 169-184.

[3] Janyska, J., Vondra, J., Natural principal connections on the principal gauge prolongation of the principal bundle, Rep. Math. Phys. 64 (3) (2009), 395-415.

[4] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol I, J. Wiley-Interscience, New York-London, 1963.

[5] Kolar, I., Induced connections on total spaces of fiber bundles, Int. J. Geom. Methods Mod. Phys. 7 (4) (2010), 705-711.

[6] Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.