Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2016_70_2_a0, author = {Jurasik, Joanna and {\L}anucha, Bartosz}, title = {Asymmetric truncated {Toeplitz} operators equal to the zero operator}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {70}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a0/} }
TY - JOUR AU - Jurasik, Joanna AU - Łanucha, Bartosz TI - Asymmetric truncated Toeplitz operators equal to the zero operator JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2016 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a0/ LA - en ID - AUM_2016_70_2_a0 ER -
Jurasik, Joanna; Łanucha, Bartosz. Asymmetric truncated Toeplitz operators equal to the zero operator. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 70 (2016) no. 2. http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a0/
[1] Ahern, P. R., Clark, D. N., Radial limits and invariant subspaces, Amer. J. Math. 92 (1970), 332-342.
[2] Ahern, P. R., Clark, D. N., Radial n-th derivatives of Blaschke products, Math. Scand. 28 (1971), 189-201.
[3] Baranov, A., Chalendar, I., Fricain, E., Mashreghi, J. E., Timotin, D., Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators, J. Funct. Anal. 259, no. 10 (2010), 2673-2701.
[4] Camara, C., Jurasik, J., Kliś-Garlicka, K., Ptak, M., Characterizations of asymmetric truncated Toeplitz operators, arXiv:1607.03342.
[5] Camara, M. C., Partington, J. R., Asymmetric truncated Toeplitz operators and Toeplitz operators with matrix symbol, arXiv:1504.06446.
[6] Cima, J. A., Garcia, S. R., Ross, W. T., Wogen, W. R., Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity, Indiana Univ. Math. J. 59, no. 2 (2010), 595-620.
[7] Cima, J. A., Matheson, A. L., Ross, W. T., The Cauchy Transform, American Mathematical Society, Providence, RI, 2006.
[8] Crofoot, R. B., Multipliers between invariant subspaces of the backward shift, Pacific J. Math. 166, no. 2 (1994), 225-246.
[9] Garcia, S. R., Mashreghi, J. E., Ross, W., Introduction to Model Spaces and Their Operators, Cambridge University Press, 2016.
[10] Garcia, S. R., Ross, W. T., A nonlinear extremal problem on the Hardy space, Comput. Methods Funct. Theory 9, no. 2 (2009), 485-524.
[11] Garcia, S. R., Ross, W. T., The norm of truncated Toeplitz operator, CRM Proceedings and Lecture Notes 51 (2010), 59-64.
[12] Garcia, S. R., Ross, W. T., Recent progress on truncated Toeplitz operators, in Blaschke Products and Their Applications, J. Mashreghi, E. Fricain (Eds.), 275-319, Fields Inst. Commun. 65, Springer, New York, 2013.
[13] Sarason, D., Algebraic properties of truncated Toeplitz operators, Operators and Matrices 1, no. 4 (2007), 491-526.