Asymmetric truncated Toeplitz operators equal to the zero operator
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 70 (2016) no. 2.

Voir la notice de l'article provenant de la source Library of Science

Asymmetric truncated Toeplitz operators are compressions of multiplication operators acting between two model spaces. These operators are natural generalizations of truncated Toeplitz operators. In this paper we describe symbols of asymmetric truncated Toeplitz operators equal to the zero operator.
Keywords: Model spaces, truncated Toeplitz operators, asymmetric truncated Toeplitz operators
@article{AUM_2016_70_2_a0,
     author = {Jurasik, Joanna and {\L}anucha, Bartosz},
     title = {Asymmetric truncated {Toeplitz} operators equal to the zero operator},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a0/}
}
TY  - JOUR
AU  - Jurasik, Joanna
AU  - Łanucha, Bartosz
TI  - Asymmetric truncated Toeplitz operators equal to the zero operator
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2016
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a0/
LA  - en
ID  - AUM_2016_70_2_a0
ER  - 
%0 Journal Article
%A Jurasik, Joanna
%A Łanucha, Bartosz
%T Asymmetric truncated Toeplitz operators equal to the zero operator
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2016
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a0/
%G en
%F AUM_2016_70_2_a0
Jurasik, Joanna; Łanucha, Bartosz. Asymmetric truncated Toeplitz operators equal to the zero operator. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 70 (2016) no. 2. http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a0/

[1] Ahern, P. R., Clark, D. N., Radial limits and invariant subspaces, Amer. J. Math. 92 (1970), 332-342.

[2] Ahern, P. R., Clark, D. N., Radial n-th derivatives of Blaschke products, Math. Scand. 28 (1971), 189-201.

[3] Baranov, A., Chalendar, I., Fricain, E., Mashreghi, J. E., Timotin, D., Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators, J. Funct. Anal. 259, no. 10 (2010), 2673-2701.

[4] Camara, C., Jurasik, J., Kliś-Garlicka, K., Ptak, M., Characterizations of asymmetric truncated Toeplitz operators, arXiv:1607.03342.

[5] Camara, M. C., Partington, J. R., Asymmetric truncated Toeplitz operators and Toeplitz operators with matrix symbol, arXiv:1504.06446.

[6] Cima, J. A., Garcia, S. R., Ross, W. T., Wogen, W. R., Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity, Indiana Univ. Math. J. 59, no. 2 (2010), 595-620.

[7] Cima, J. A., Matheson, A. L., Ross, W. T., The Cauchy Transform, American Mathematical Society, Providence, RI, 2006.

[8] Crofoot, R. B., Multipliers between invariant subspaces of the backward shift, Pacific J. Math. 166, no. 2 (1994), 225-246.

[9] Garcia, S. R., Mashreghi, J. E., Ross, W., Introduction to Model Spaces and Their Operators, Cambridge University Press, 2016.

[10] Garcia, S. R., Ross, W. T., A nonlinear extremal problem on the Hardy space, Comput. Methods Funct. Theory 9, no. 2 (2009), 485-524.

[11] Garcia, S. R., Ross, W. T., The norm of truncated Toeplitz operator, CRM Proceedings and Lecture Notes 51 (2010), 59-64.

[12] Garcia, S. R., Ross, W. T., Recent progress on truncated Toeplitz operators, in Blaschke Products and Their Applications, J. Mashreghi, E. Fricain (Eds.), 275-319, Fields Inst. Commun. 65, Springer, New York, 2013.

[13] Sarason, D., Algebraic properties of truncated Toeplitz operators, Operators and Matrices 1, no. 4 (2007), 491-526.