Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2016_70_1_a6, author = {Vamshee Krishna, D. and Venkateswarlu, B. and RamReddy, T.}, title = {Third {Hankel} determinant for starlike and convex functions with respect to symmetric points}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {70}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2016_70_1_a6/} }
TY - JOUR AU - Vamshee Krishna, D. AU - Venkateswarlu, B. AU - RamReddy, T. TI - Third Hankel determinant for starlike and convex functions with respect to symmetric points JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2016 VL - 70 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2016_70_1_a6/ LA - en ID - AUM_2016_70_1_a6 ER -
%0 Journal Article %A Vamshee Krishna, D. %A Venkateswarlu, B. %A RamReddy, T. %T Third Hankel determinant for starlike and convex functions with respect to symmetric points %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2016 %V 70 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2016_70_1_a6/ %G en %F AUM_2016_70_1_a6
Vamshee Krishna, D.; Venkateswarlu, B.; RamReddy, T. Third Hankel determinant for starlike and convex functions with respect to symmetric points. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 70 (2016) no. 1. http://geodesic.mathdoc.fr/item/AUM_2016_70_1_a6/
[1] Ali, R. M., Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. (second series) 26 (1) (2003), 63-71.
[2] Babalola, K. O., On \(H3(1)\) Hankel determinant for some classes of univalent functions, Inequality Theory and Applications 6 (2010), 1-7.
[3] Das, R. N., Singh, P., On subclass of schlicht mappings, Indian J. Pure and Appl. Math. 8 (1977), 864-872.
[4] Duren, P. L., Univalent Functions, Springer, New York, 1983.
[5] Grenander, U., Szego, G., Toeplitz Forms and Their Applications, 2nd ed., Chelsea Publishing Co., New York, 1984.
[6] Janteng, A., Halim, S. A., Darus, M., Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse) 1 (13) (2007), 619-625.
[7] Libera, R. J., Złotkiewicz, E. J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), 251-257.
[8] Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
[9] Pommerenke, Ch., On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc. 41 (1966), 111-122.
[10] Prithvipal Singh , A study of some subclasses of analytic functions in the unit disc, Ph.D. Thesis (1979), I.I.T. Kanpur.
[11] Raja, M., Malik, S. N., Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inq. Appl. (2013), vol. 2013.
[12] RamReddy, T., A study of certain subclasses of univalent analytic functions, Ph.D. Thesis (1983), I.I.T. Kanpur.
[13] RamReddy, T., Vamshee Krishna, D., Hankel determinant for starlike and convex functions with respect to symmetric points, J. Ind. Math. Soc. (N. S.) 79 (1-4) (2012), 161-171.
[14] Ratanchand, Some aspects of functions analytic in the unit disc, Ph.D. Thesis (1978), I.I.T. Kanpur.
[15] Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.
[16] Simon, B., Orthogonal Polynomials on the Unit Circle, Part 1. Classical Theory, American Mathematical Society, Providence (RI), 2005.
[17] Vamshee Krishna, D., Venkateswarlu, B., RamReddy, T., Third Hankel determinant for certain subclass of p-valent functions, Complex Var. and Elliptic Eqns. 60 (9) (2015), 1301-1307.
[18] Vamshee Krishna, D., RamReddy, T., Coefficient inequality for certain p-valent analytic functions, Rocky Mountain J. Math. 44 (6) (2014), 941-1959.