Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2016_70_1_a5, author = {Gupta, Sahil and Narang, T. D.}, title = {On strong proximinality in normed linear spaces}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {70}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2016_70_1_a5/} }
Gupta, Sahil; Narang, T. D. On strong proximinality in normed linear spaces. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 70 (2016) no. 1. http://geodesic.mathdoc.fr/item/AUM_2016_70_1_a5/
[1] Bandyopadhyay, Pradipta, Li, Yongjin, Lin, Bor-Luh, Narayana, Darapaneni, Proximinality in Banach spaces, J. Math. Anal. Appl. 341 (2008), 309-317.
[2] Cheney, E. W., Wulbert, D. E., The existence and uniqueness of best approximation, Math. Scand. 24 (1969), 113-140.
[3] Dutta, S., Shunmugraj, P., Strong proximinality of closed convex sets, J. Approx. Theory 163 (2011), 547-553.
[4] Effimov, N. V., Steckin, S. B., Approximative compactness and Chebyshev sets, Soviet Math. Dokl. 2 (1961), 1226-1228.
[5] Finet, C., Quarta, L., Some remarks on M-ideals and strong proximinality, Bull. Korean Math. Soc. 40 (2003), 503-508.
[6] Godefroy, G., Indumathi, V., Strong proximinality and polyhedral spaces, Rev. Mat. Complut. 14 (2001), 105-125.
[7] Jayanarayanan, C. R., Paul, T., Strong proximinality and intersection properties of balls in Banach spaces, J. Math. Anal. Appl. 426 (2015), 1217-1231.
[8] Narayana, D., Strong proximinality and renorming, Proc. Amer. Math. Soc. 134 (2005), 1167-1172.
[9] Panda, B. B., Kapoor, O. P., A generalization of the local uniform rotundity of the norm, J. Math. Anal. Appl. 52 (1975), 300-308.
[10] Singer, I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York, 1967.
[11] Vlasov, L. P., The concept of approximative compactness and its variants, Mat. Zametki 16 (1974), 337-348 (Russian), English transl. in Math. Notes 16, No. 2 (1974), 786-792.
[12] Zhang, Z. H., Shi, Z. R., Convexities and approximative compactness and continuity of metric projection in Banach spaces, J. Approx. Theory 161 (2009), 802-812.