On regular local operators on smooth maps
Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 69 (2015) no. 2
Voir la notice de l'article provenant de la source Library of Science
Let X, Y, Z, W be manifolds and π : Z → X be a surjective submersion. We characterize π-local regular operators A : C∞(X,Y) → C∞(Z,W) in terms of the corresponding maps à : J∞(X,Y) ×XZ → W satisfying the so-called local finite order factorization property.
Keywords:
Local regular operator, jet.
@article{AUM_2015_69_2_a3,
author = {Mikulski, W{\l}odzimierz},
title = {On regular local operators on smooth maps},
journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica},
publisher = {mathdoc},
volume = {69},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a3/}
}
Mikulski, Włodzimierz. On regular local operators on smooth maps. Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 69 (2015) no. 2. http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a3/
[1] Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
[2] Slovak, J., Peetre theorem for nonlinear operators, Ann. Global Anal. Geom. 6 (3) (1988), 273-283.