The natural transformations between r-th order prolongation of tangent and cotangent bundles over Riemannian manifolds
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 1.

Voir la notice de l'article provenant de la source Library of Science

If (M, g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T*M given by v → g(v, –) between the tangent TM and the cotangent T*M bundles of M. In the present note first we generalize this isomorphism to the one JrTM → JrT*M between the r-th order prolongation JrTM of tangent TM and the r-th order prolongation JrT*M of cotangent T*M bundles of M. Further we describe all base preserving vector bundle maps DM(g) : JrTM → JrT*M depending on a Riemannian metric g in terms of natural (in g) tensor fields on M.
Keywords: Riemannian manifold, higher order prolongation of a vector bundle, natural tensor, natural operator
@article{AUM_2015_69_1_a7,
     author = {Plaszczyk, Mariusz},
     title = {The natural transformations between r-th order prolongation of tangent and cotangent bundles over {Riemannian} manifolds},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a7/}
}
TY  - JOUR
AU  - Plaszczyk, Mariusz
TI  - The natural transformations between r-th order prolongation of tangent and cotangent bundles over Riemannian manifolds
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2015
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a7/
LA  - en
ID  - AUM_2015_69_1_a7
ER  - 
%0 Journal Article
%A Plaszczyk, Mariusz
%T The natural transformations between r-th order prolongation of tangent and cotangent bundles over Riemannian manifolds
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2015
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a7/
%G en
%F AUM_2015_69_1_a7
Plaszczyk, Mariusz. The natural transformations between r-th order prolongation of tangent and cotangent bundles over Riemannian manifolds. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 1. http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a7/

[1] Epstein, D. B. A., Natural tensors on Riemannian manifolds, J. Differential Geom. 10 (1975), 631–645.

[2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, Vol. I, J. Wiley- Interscience, New York–London, 1963.

[3] Kolar, I., Connections on higher order frame bundles and their gauge analogies, Variations, Geometry and Physics, Nova Sci. Publ., New York, 2009, 167–188.

[4] Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

[5] Kurek, J., Mikulski, W. M., The natural transformations between r-tangent and rcotangent bundles over Riemannian manifolds, Ann. Univ. Mariae Curie-Skłodowska Sect. A 68 (2) (2014), 59–64.

[6] Kurek, J., Mikulski, W. M., The natural operators lifting connections to tensor powers of the cotangent bundle, Miskolc Mathematical Notes 14, No. 2 (2013), 517–524.

[7] Mikulski, W. M., Lifting connections to the r-jet prolongation of the cotangent bundle, Math. Appl. (Brno) 3 (2014), 115–124.