Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2015_69_1_a6, author = {Bielak, Halina and Powro\'znik, Kamil}, title = {Statuses and double branch weights of quadrangular outerplanar graphs}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a6/} }
TY - JOUR AU - Bielak, Halina AU - Powroźnik, Kamil TI - Statuses and double branch weights of quadrangular outerplanar graphs JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2015 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a6/ LA - en ID - AUM_2015_69_1_a6 ER -
%0 Journal Article %A Bielak, Halina %A Powroźnik, Kamil %T Statuses and double branch weights of quadrangular outerplanar graphs %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2015 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a6/ %G en %F AUM_2015_69_1_a6
Bielak, Halina; Powroźnik, Kamil. Statuses and double branch weights of quadrangular outerplanar graphs. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 1. http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a6/
[1] Bondy, J. A., Murty, U. S. R., Graph Theory with Application, Macmillan London and Elsevier, New York, 1976.
[2] Entringer, R. C., Jackson, D. E., Snyder, D. A., Distance in graphs, Czech. Math. J. 26 (1976), 283–296.
[3] Jordan, C., Sur les assembblages des lignes, J. Reine Angnew. Math. 70 (1896), 185–190.
[4] Kang, A. N. C., Ault, D. A., Some properties of a centroid of a free tree, Inform. Process. Lett. 4, No. 1 (1975), 18–20.
[5] Kariv, O., Hakimi, S. L., An algorithmic approach to network location problems. II: The p-medians, SIAM J. Appl. Math. 37 (1979), 539–560.
[6] Korach, E., Rotem, D., Santoro, N., Distributed algorithms for finding centers and medians in networks, ACM Trans. on Programming Languages and Systems 6, No. 3 (1984), 380–401.
[7] Lin, Ch., Shang, J-L., Statuses and branch-weights of weighted trees, Czech. Math. J. 59 (134) (2009), 1019–1025.
[8] Lin, Ch., Tsai, W-H., Shang, J-L., Zhang, Y-J., Minimum statuses of connected graphs with fixed maximum degree and order, J. Comb. Optim. 24 (2012), 147–161.
[9] Mitchell, S. L., Another characterization of the centroid of a tree, Discrete Math. 23 (1978), 277–280.
[10] Proskurowski, A., Centers of 2-trees, Ann. Discrete Math. 9 (1980), 1–5.
[11] Slater, P. J., Medians of arbitrary graphs, J. Graph Theory 4 (1980), 289–392.
[12] Szamkołowicz, L., On problems related to characteristic vertices of graphs, Colloq. Math. 42 (1979), 367–375.
[13] Truszczynski, M., Centers and centroids of unicyclic graphs, Math. Slovaka 35 (1985), 223–228.
[14] Zelinka, B., Medians and peripherians of trees, Arch. Math. (Brno) 4, No. 2 (1968), 87–95.