Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2015_69_1_a3, author = {Dymek, Grzegorz}, title = {On {pseudo-BCI-algebras}}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a3/} }
Dymek, Grzegorz. On pseudo-BCI-algebras. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 1. http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a3/
[1] Dudek, W. A., Jun, Y. B., Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187–190.
[2] Dymek, G., Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73–90.
[3] Dymek, G., p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012), 461–474.
[4] Dymek, G., On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014), 167–187.
[5] Dymek, G., Kozanecka-Dymek, A., Pseudo-BCI-logic, Bull. Sect. Logic Univ. Łódz 42 (2013), 33–42.
[6] Halaˇs, R., K¨uhr, J., Deductive systems and annihilators of pseudo-BCK-algebras, Ital. J. Pure Appl. Math. 25 (2009).
[7] Iorgulescu, A., Algebras of Logic as BCK Algebras, Editura ASE, Bucharest, 2008.
[8] Is´eki, K., An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26–29.
[9] Jun, Y. B., Kim, H. S., Neggers, J., On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39–46.