Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2015_69_1_a0, author = {Boryc, Marcin and Kruk, {\L}ukasz}, title = {A multidimensional singular stochastic control problem on a finite time horizon}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a0/} }
TY - JOUR AU - Boryc, Marcin AU - Kruk, Łukasz TI - A multidimensional singular stochastic control problem on a finite time horizon JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2015 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a0/ LA - en ID - AUM_2015_69_1_a0 ER -
%0 Journal Article %A Boryc, Marcin %A Kruk, Łukasz %T A multidimensional singular stochastic control problem on a finite time horizon %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2015 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a0/ %G en %F AUM_2015_69_1_a0
Boryc, Marcin; Kruk, Łukasz. A multidimensional singular stochastic control problem on a finite time horizon. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 1. http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a0/
[1] Budhiraja, A., Ross, K., Existence of optimal controls for singular control problems with state constraints, Ann. Appl. Probab. 16, No. 4 (2006), 2235–2255.
[2] Chow, P. L., Menaldi, J. L., Robin, M., Additive control of stochastic linear systems with finite horizon, SIAM J. Control Optim. 23, No.6 (1985), 858–899.
[3] Dufour, F., Miller, B., Singular stichastic control problems, SIAM J. Control Optim. 43, No. 2 (2004), 708–730.
[4] Evans, L. C., Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.
[5] Fleming, W. H., Soner, H. M., Controlled Markov Processes and Viscosity Solutions, Springer, New York, 2006.
[6] Haussman, U. G., Suo, W., Singular optimal stochastic controls. I. Existence, SIAM J. Control Optim. 33, No. 3 (1995), 916–936.
[7] Karatzas, I., Shreve, S. E., Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1988.
[8] Kruk, Ł., Optimal policies for n-dimensional singular stochastic control problems, Part I: The Skorokhod problem, SIAM J. Control Optim. 38, No. 5 (2000), 1603–1622.
[9] Kruk, Ł., Optimal policies for n-dimensional singular stochastic control problems, Part II: The radially symmetric case. Ergodic control, SIAM J. Control Optim. 39, No. 2 (2000), 635–659.
[10] Krylov, N. V., Controlled Diffusion Processes, Springer-Verlag, New York, 1980.
[11] Menaldi, J. L., Taksar, M. I., Optimal correction problem of a multidimensional stochastic system, Automatica J. IFAC 25, No. 2 (1989), 223–232.
[12] Rudin, W., Functional Analysis, McGraw-Hill Book Company, New York, 1991.
[13] Rudin, W., Principles of Mathematical Analysis, McGraw-Hill Book Company, New York, 1976.
[14] Soner, H. M., Shreve, S. E., Regularity of the value function for a two-dimensional singular stochastic control problem, SIAM J. Control Optim. 27 (1989), 876–907.
[15] Soner, H. M., Shreve, S. E., A free boundary problem related to singular stochastic control, Applied stochastic analysis (London, 1989), Stochastics Monogr. 5, Gordon and Breach, New York, 1991, 265–301.
[16] Soner, H. M., Shreve, S. E., A free boundary problem related to singular stochastic control: the parabolic case, Comm. Partial Differential Equations 16 (1991), 373–424.
[17] S. A. Williams, P. L. Chow and J. L. Menaldi, Regularity of the free boundary in singular stochastic control, J. Differential Equations 111 (1994), 175–201.
[18] http://en.wikipedia.org/wiki/Gronwall’s inequality, 24.09.2013.