Estimates of \(L_p\) norms for sums of positive functions
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 2.

Voir la notice de l'article provenant de la source Library of Science

We present new inequalities of L_p norms for sums of positive functions. These inequalities are useful for investigation of convergence of simple partial fractions in L_p(ℝ).
Keywords: Simple partial fractions, \(L_p\) estimates.
@article{AUM_2013_67_2_a2,
     author = {Kayumov, Ilgiz},
     title = {Estimates of {\(L_p\)} norms for sums of positive functions},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a2/}
}
TY  - JOUR
AU  - Kayumov, Ilgiz
TI  - Estimates of \(L_p\) norms for sums of positive functions
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2013
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a2/
LA  - en
ID  - AUM_2013_67_2_a2
ER  - 
%0 Journal Article
%A Kayumov, Ilgiz
%T Estimates of \(L_p\) norms for sums of positive functions
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2013
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a2/
%G en
%F AUM_2013_67_2_a2
Kayumov, Ilgiz. Estimates of \(L_p\) norms for sums of positive functions. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 2. http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a2/

[1] Protasov, V. Yu., Approximation by simple partial fractions and the Hilbert transform, Izv. Math. 73 (2) (2009), 333–349.

[2] Kayumov, I. R., Convergence of simple partial fractions in \(L_p(\mathbb{R})\), Sb. Math. 202 (10) (2011), 1493–1504.

[3] Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, Cambridge University Press, Cambridge, 1934.