Trace parameters for Teichmuller space of genus 2 surfaces and mapping class group
Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 67 (2013) no. 1
Cet article a éte moissonné depuis la source Library of Science
We obtain a representation of the mapping class group of genus 2 surface in terms of a coordinate system of the Teichmuller space defined by trace functions.
Keywords:
Teichmuller space, Fuchsian group, mapping class group.
@article{AUM_2013_67_1_a7,
author = {Nakamura, Gou and Nakanishi, Toshihiro},
title = {Trace parameters for {Teichmuller} space of genus 2 surfaces and mapping class group},
journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica},
year = {2013},
volume = {67},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a7/}
}
TY - JOUR AU - Nakamura, Gou AU - Nakanishi, Toshihiro TI - Trace parameters for Teichmuller space of genus 2 surfaces and mapping class group JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2013 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a7/ LA - en ID - AUM_2013_67_1_a7 ER -
%0 Journal Article %A Nakamura, Gou %A Nakanishi, Toshihiro %T Trace parameters for Teichmuller space of genus 2 surfaces and mapping class group %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2013 %V 67 %N 1 %U http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a7/ %G en %F AUM_2013_67_1_a7
Nakamura, Gou; Nakanishi, Toshihiro. Trace parameters for Teichmuller space of genus 2 surfaces and mapping class group. Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 67 (2013) no. 1. http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a7/
[1] Birman, J. S., Braids, links, and mapping class groups, Ann. of Math. Studies 82, Princeton Univ. Press, Princeton, N. J., 1974.
[2] Maclachlan, C., Reid, A. W., The Arithmetic of Hyperbolic 3-Manifolds, Springer-Verlag, New York, 2003.
[3] Nakamura, G., Nakanishi, T., Parametrizations of some Teichm¨uller spaces by trace functions, Conform. Geom. Dyn. 17 (2013), 47–57.
[4] Nakanishi, T., Naatanen, M., Parametrization of Teichmuller space by length parameters, Analysis and Topology (C. Andreian-Cazacu, O. Lehto and Th. M. Rassias, eds.), 541–560, World Sci. Publ., Singapore, 1998.
[5] Zieschang, H., Finite Groups of Mapping Classes of Surfaces, Springer-Verlag, Berlin, 1981.