Spacelike intersection curve of three spacelike hypersurfaces in \(E_1^4\)
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 1.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we compute the Frenet vectors and the curvatures of the spacelike intersection curve of three spacelike hypersurfaces given by their parametric equations in four-dimensional Minkowski space E_1^4.
Keywords: Intersection curve, hypersurface.
@article{AUM_2013_67_1_a6,
     author = {Duldul, B. Uyar and Caliskan, M.},
     title = {Spacelike intersection curve of three spacelike hypersurfaces in {\(E_1^4\)}},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a6/}
}
TY  - JOUR
AU  - Duldul, B. Uyar
AU  - Caliskan, M.
TI  - Spacelike intersection curve of three spacelike hypersurfaces in \(E_1^4\)
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2013
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a6/
LA  - en
ID  - AUM_2013_67_1_a6
ER  - 
%0 Journal Article
%A Duldul, B. Uyar
%A Caliskan, M.
%T Spacelike intersection curve of three spacelike hypersurfaces in \(E_1^4\)
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2013
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a6/
%G en
%F AUM_2013_67_1_a6
Duldul, B. Uyar; Caliskan, M. Spacelike intersection curve of three spacelike hypersurfaces in \(E_1^4\). Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 1. http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a6/

[1] Alessio, O., Geometria diferencial de curvas de intersecao de duas superfıcies implıcitas, TEMA Tend. Mat. Apl. Comput. 7 (2) (2006), 169–178.

[2] Alessio, O., Guadalupe, I. V., Determination of a transversal intersection curve of two spacelike surfaces in Lorentz–Minkowski 3-Space \(L^3\), Hadronic Journal 30 (3) (2007), 315–342.

[3] Alessio, O., Differential geometry of intersection curves in \(R^4\) of three implicit surfaces, Comput. Aided Geom. Des. 26 (2009), 455–471.

[4] Duldul, M., On the intersection curve of three parametric hypersurfaces, Comput. Aided Geom. Des. 27 (2010), 118–127.

[5] Goldman, R., Curvature formulas for implicit curves and surfaces, Comput. Aided Geom. Des. 22 (2005), 632–658.

[6] Hartmann, E., \(G^2\) interpolation and blending on surfaces, The Visual Computer 12 (1996), 181–192.

[7] Turgut, A., Spacelike and timelike ruled surfaces on the Minkowski 3-space \(R^3_1\), Ph. D. thesis, Ankara University, 1995.

[8] O’Neill, B., Semi Riemannian Geometry, Academic Press, New York–London, 1983.

[9] Walrave, J., Curves and surfaces in Minkowski space, Ph. D. thesis, K. U. Leuven. Fac. Science, Leuven, 1995.

[10] Williams, M. Z., Stein, F. M., A triple product of vectors in four-space, Math. Mag. 37 (4) (1964), 230–235.

[11] Willmore, T. J., An Introduction to Differential Geometry, Clarendon Press, Oxford, 1959.

[12] Ye, X., Maekawa T., Differential geometry of intersection curves of two surfaces, Comput. Aided Geom. Des. 16 (1999), 767–788.

[13] Yilmaz, S., Turgut, M., On the differential geometry of the curves in Minkowski space-time I, Int. J. Contemp. Math. Sciences 3 (27) (2008), 1343–1349.