Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2013_67_1_a5, author = {Plaksa, S. A. and Shpakivskyi, V. S.}, title = {On limiting values of {Cauchy} type integral in a harmonic algebra with two-dimensional radical}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {67}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a5/} }
TY - JOUR AU - Plaksa, S. A. AU - Shpakivskyi, V. S. TI - On limiting values of Cauchy type integral in a harmonic algebra with two-dimensional radical JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2013 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a5/ LA - en ID - AUM_2013_67_1_a5 ER -
%0 Journal Article %A Plaksa, S. A. %A Shpakivskyi, V. S. %T On limiting values of Cauchy type integral in a harmonic algebra with two-dimensional radical %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2013 %V 67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a5/ %G en %F AUM_2013_67_1_a5
Plaksa, S. A.; Shpakivskyi, V. S. On limiting values of Cauchy type integral in a harmonic algebra with two-dimensional radical. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 1. http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a5/
[1] Davydov, N. A., The continuity of an integral of Cauchy type in a closed domain, Dokl. Akad. Nauk SSSR 64, no. 6 (1949), 759–762 (Russian).
[2] Salaev, V. V., Direct and inverse estimates for a singular Cauchy integral along a closed curve, Mat. Zametki 19, no. 3 (1976), 365–380 (Russian).
[3] Gerus, O. F., Finite-dimensional smoothness of Cauchy-type integrals, Ukrainian Math. J. 29, no. 5 (1977), 490–493.
[4] Gerus, O. F., Some estimates of moduli of smoothness of integrals of the Cauchy type, Ukrainian Math. J. 30, no. 5 (1978), 594–601.
[5] Ketchum, P. W., Analytic functions of hypercomplex variables, Trans. Amer. Math. Soc. 30 (1928), 641–667.
[6] Kunz, K. S., Application of an algebraic technique to the solution of Laplace’s equation in three dimensions, SIAM J. Appl. Math. 21, no. 3 (1971), 425–441.
[7] Mel’nichenko, I. P., The representation of harmonic mappings by monogenic functions, Ukrainian Math. J. 27, no. 5 (1975), 499–505.
[8] Mel’nichenko, I. P., Algebras of functionally invariant solutions of the threedimensional Laplace equation, Ukrainian Math. J. 55, no. 9 (2003), 1551–1559.
[9] Mel’nichenko, I. P., Plaksa, S. A., Commutative algebras and spatial potential fields, Inst. Math. NAS Ukraine, Kiev, 2008 (Russian).
[10] Plaksa, S. A., Riemann boundary-value problem with infinite index of logarithmic order on a spiral contour. I, Ukrainian Math. J. 42, no. 11 (1990), 1509–1517.
[11] Shpakivskyi, V. S., Plaksa, S. A., Integral theorems and a Cauchy formula in a commutative three-dimensional harmonic algebra, Bull. Soc. Sci. Lett. Łódz Ser. Rech. Deform. 60 (2010), 47–54.