On lifts of projectable-projectable classical linear connections to the cotangent bundle
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 1.

Voir la notice de l'article provenant de la source Library of Science

We describe all ℱ^2ℳ_m_1,m_2,n_1,n_2-natural operators D Q^τ_proj-proj⇝ QT^* transforming projectable-projectable classical torsion-free linear connections ∇ on fibred-fibred manifolds Y into classical linear connections D(∇) on cotangent bundles T^*Y of Y. We show that this problem can be reduced to finding ℱ^2 ℳ_m_1,m_2,n_1,n_2-natural operators D Q^τ_proj-proj⇝(T^*,⊗^pT^*⊗⊗^q T) for p=2, q=1 and p=3, q=0.
Keywords: Fibred-fibred manifold, projectable-projectable linear connection, natural operator.
@article{AUM_2013_67_1_a4,
     author = {Bednarska, Anna},
     title = {On lifts of projectable-projectable classical linear connections to the cotangent bundle},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a4/}
}
TY  - JOUR
AU  - Bednarska, Anna
TI  - On lifts of projectable-projectable classical linear connections to the cotangent bundle
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2013
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a4/
LA  - en
ID  - AUM_2013_67_1_a4
ER  - 
%0 Journal Article
%A Bednarska, Anna
%T On lifts of projectable-projectable classical linear connections to the cotangent bundle
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2013
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a4/
%G en
%F AUM_2013_67_1_a4
Bednarska, Anna. On lifts of projectable-projectable classical linear connections to the cotangent bundle. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 1. http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a4/

[1] Doupovec, M., Mikulski, W. M., On prolongation of higher order onnections, Ann. Polon. Math. 102, no. 3 (2011), 279–292.

[2] Kolar, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 59 (2005), 67–76.

[3] Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin–Heidelberg, 1993.

[4] Kurek, J., Mikulski, W. M., On prolongations of projectable connections, Ann. Polon. Math. 101, no. 3 (2011), 237–250.

[5] Kurek, J., Mikulski, W. M., The natural liftings of connections to tensor powers of the cotangent bundle, AGMP-8 Proceedings (Brno 2012), Miskolc Mathematical Notes, to appear.

[6] Kures, M., Natural lifts of classical linear connections to the cotangent bundle, Suppl. Rend. Mat. Palermo II 43 (1996), 181–187.

[7] Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (3–4) (2001), 441–458.

[8] Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York, 1973.