Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2013_67_1_a1, author = {Denega, Iryna V.}, title = {Generalization of some extremal problems on non-overlapping domains with free poles}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {67}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a1/} }
TY - JOUR AU - Denega, Iryna V. TI - Generalization of some extremal problems on non-overlapping domains with free poles JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2013 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a1/ LA - en ID - AUM_2013_67_1_a1 ER -
Denega, Iryna V. Generalization of some extremal problems on non-overlapping domains with free poles. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 1. http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a1/
[1] Bieberbach, L., Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys-Math. Kl. 138 (1916), 940–955.
[2] Bakhtin, A. K., Bakhtina, G. P., Separating transformation and problem on nonoverlapping domains, Proceedings of Institute of Mathematics of NAS of Ukraine 3 (4) (2006), 273–281.
[3] Bakhtin, A. K., Bakhtina, G. P., Zelinskii, Yu. B., Topological-algebraic structures and geometric methods in complex analysis, Proceedings of the Institute of Mathematics of NAS of Ukraine 73 (2008), 308 pp. (Russian).
[4] Dubinin, V. N., The symmetrization method in problems on non-overlapping domains, Mat. Sb. (N.S.) 128 (1) (1985), 110–123 (Russian).
[5] Dubinin, V. N., A separating transformation of domains and problems on extremal decomposition, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 168 (1988), 48–66 (Russian); translation in J. Soviet Math. 53, no. 3 (1991), 252–263.
[6] Dubinin, V. N., Symmetrization method in geometric function theory of complex variables, Uspekhi Mat. Nauk 49, no. 1 (1994), 3–76 (Russian); translation in Russian Math. Surveys 49, no. 1 (1994), 1–79.
[7] Dubinin, V. N., Asymptotics of the modulus of a degenerate condenser, and some of its applications, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 237 (1997), 56–73 (Russian); translation in J. Math. Sci. (New York) 95, no. 3 (1999), 2209–2220.
[8] Dubinin, V. N., Capacities of condensers and symmetrization in geometric function theory of complex variables, Dal’nayka, Vladivostok, 2009 (Russian).
[9] Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.
[10] Goluzin, G. M., Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, no. 26, Amer. Math. Soc., Providence, R.I. (1969).
[11] Grotzsch, H., Uber einige Extremalprobleme der konformen Abbildung. I, II, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math.-Phys. 80 (6) (1928), 367–376, 497–502.
[12] Grunsky, H., Koeffizientenbedingungen f¨ur schlicht abbildende meromorphe Funltionen, Math. Z. 45, no. 1 (1939), 29–61.
[13] Hayman, W. K., Multivalent Functions, Cambridge University Press, Cambridge, 1958.
[14] Jenkins, J. A., Some uniqueness results in the theory of symmetrization, Ann. Math. 61, no. 1 (1955), 106–115.
[15] Kolbina, L. I., Conformal mapping of the unit circle onto non-overlapping domains, Vestnik Leningrad. Univ. 10, no. 5 (1955), 37–43 (Russian).
[16] Kovalev, L. V., On the problem of extremal decomposition with free poles on the circle, Dal’nevost. Mat. Sb. 2 (1996), 96–98 (Russian).
[17] Lavrent’ev, M. A., On the theory of conformal mappings, Tr. Fiz.-Mat. Inst. Akad. Nauk SSSR, Otdel. Mat. 5 (1934), 195–245 (Russian).
[18] Nehari, Z., Some inequalities in the theory of functions Trans. Amer. Math. Soc. 75, no. 2 (1953), 256–286.
[19] Riemann, B., Theorie der Abelschen Functionen J. Reine Angew. Math. 54 (1867), 101–155.
[20] Teichmuller, O., Collected Papers, Springer, Berlin, 1982.
[21] Vasil’ev, A., Moduli of Families of Curves for Conformal and Quasiconformal Mappings, Springer-Verlag, Berlin, 2002.