Majorization for certain classes of meromorphic functions defined by integral operator
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 66 (2012) no. 2.

Voir la notice de l'article provenant de la source Library of Science

Here we investigate a majorization problem involving starlike meromorphic functions of complex order belonging to a certain subclass of meromorphic univalent functions defined by an integral operator introduced recently by Lashin.
@article{AUM_2012_66_2_a3,
     author = {Goyal, S. P. and Goswami, Pranay},
     title = {Majorization for certain classes of meromorphic functions defined by integral operator},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a3/}
}
TY  - JOUR
AU  - Goyal, S. P.
AU  - Goswami, Pranay
TI  - Majorization for certain classes of meromorphic functions defined by integral operator
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2012
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a3/
LA  - en
ID  - AUM_2012_66_2_a3
ER  - 
%0 Journal Article
%A Goyal, S. P.
%A Goswami, Pranay
%T Majorization for certain classes of meromorphic functions defined by integral operator
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2012
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a3/
%G en
%F AUM_2012_66_2_a3
Goyal, S. P.; Goswami, Pranay. Majorization for certain classes of meromorphic functions defined by integral operator. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 66 (2012) no. 2. http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a3/

[1] Altintas, O., Ozkan, O., Srivastava, H. M., Majorization by starlike functions of complex order, Complex Variables Theory Appl. 46 (2001), 207-218.

[2] Goyal, S. P., Goswami, P., Majorization for certain classes of analytic functionsdefined by fractional derivatives, Appl. Math. Lett. 22 (12) (2009), 1855-1858.

[3] Goyal, S. P., Bansal S. K., Goswami, P., Majorization for certain classes of analytic functions defined by linear operator using differential subordination, J. Appl. Math. Stat. Inform. 6 (2) (2010), 45-50.

[4] Goswami, P., Wang, Z.-G., Majorization for certain classes of analytic functions, Acta Univ. Apulensis Math. Inform. 21 (2009), 97-104.

[5] Goswami, P., Aouf, M. K., Majorization properties for certain classes of analytic functions using the Salagean operator, Appl. Math. Lett. 23 (11) (2010), 1351-1354.

[6] Goswami, P., Sharma, B., Bulboaca, T., Majorization for certain classes of analytic functions using multiplier transformation, Appl. Math. Lett. 23 (10) (2010), 633-637.

[7] Jung, I. B., Kim, Y. C., Srivastava, H. M., The Hardy space of analytic functions associated with certain one-parameter families of integral operator, J. Math. Anal. Appl. 176 (1) (1993), 138-147.

[8] Lashin, A. Y., On certain subclasses of meromorphic functions associated with certain integral operators, Comput. Math. Appl., 59 (1) (2010), 524-531.

[9] MacGreogor, T. H., Majorization by univalent functions, Duke Math. J. 34 (1967), 95-102.

[10] Nehari, Z., Conformal Mapping, MacGraw-Hill Book Company, New York, Toronto and London, 1955.