Generalization of p-regularity notion and tangent cone description in the singular case
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 66 (2012) no. 2.

Voir la notice de l'article provenant de la source Library of Science

The theory of p-regularity has approximately twenty-five years’ history and many results have been obtained up to now. The main result of this theory is description of tangent cone to zero set in singular case. However there are numerous nonlinear objects for which the p-regularity condition fails, especially for p gt; 2. In this paper we generalize the p-regularity notion as a starting point for more detailed consideration based on different p-factor operators constructions.
Keywords: p-regularity, singularity, nonlinear mapping, p-factor operator, curves, surfaces
@article{AUM_2012_66_2_a2,
     author = {Grzegorczyk, Wies{\l}aw and Medak, Beata and Tret{\textquoteright}yakov, Alexey A.},
     title = {Generalization of p-regularity notion and tangent cone description in the singular case},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a2/}
}
TY  - JOUR
AU  - Grzegorczyk, Wiesław
AU  - Medak, Beata
AU  - Tret’yakov, Alexey A.
TI  - Generalization of p-regularity notion and tangent cone description in the singular case
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2012
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a2/
LA  - en
ID  - AUM_2012_66_2_a2
ER  - 
%0 Journal Article
%A Grzegorczyk, Wiesław
%A Medak, Beata
%A Tret’yakov, Alexey A.
%T Generalization of p-regularity notion and tangent cone description in the singular case
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2012
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a2/
%G en
%F AUM_2012_66_2_a2
Grzegorczyk, Wiesław; Medak, Beata; Tret’yakov, Alexey A. Generalization of p-regularity notion and tangent cone description in the singular case. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 66 (2012) no. 2. http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a2/

[1] Brezhneva, O. A., Tret’yakov, A. A., New Methods for Solving Singular Nonlinear Problems, Moscow, 2000 (Russian).

[2] Brezhneva, O. A., Tret’yakov, A. A., Optimality conditions for degenerate extremum problems with equality contractions, SIAM J. Control Optim. 42, no. 2 (2003), 725-745.

[3] Ioffe, A. D., Tihomirov, V. M., Theory of Extremal Problems, North-Holland, Studies in Mathematics and its Applications, Amsterdam, 1979.

[4] Izmailov, A. F., Tret‘yakov, A. A., Factor-analysis of Nonlinear Mappings, Nauka, Moscow, 1994 (Russian).

[5] Izmailov, A. F., Tret’yakov, A. A., 2-regular solutions of nonlinear problems, Theory and numerical methods, Fizmatlit., Nauka, Moscow, 1999 (Russian).

[6] Musielak, A., Linear Operators, PWN, Warszawa, 1987 (Polish).

[7] Niczyporowicz, E., The Flat Curves. Selected Problems in Analytic and Differential Geometry, PWN, Warszawa, 1991 (Polish).

[8] Prusińska, A., Trety’akov, A., A remark on existence of solutions to nonlinear equations with degenerate mappings, Set-Valued Var. Anal. 16 (2008), 93-104.

[9] Tret’yakov, A. A., Marsden, J. E., Factor-analysis of nonlinear mappings: p-regularity theory, Commun. Pure Appl. Anal. 2, no. 4 (2003), 425-445.

[10] Tret’yakov, A. A., Necessary and Sufficient Conditions for Optimality of p-th Order, Control and Optimization, Moscow, MSU, 1983, 28-35 (Russian).

[11] Tret’yakov, A. A., Necessary and sufficient conditions for optimality of p-th order, Zh. Vychisl. Mat. i Mat. Fiz. 24 (1984), 123-127 (Russian).