Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2012_66_2_a0, author = {Dziok, Jacek}, title = {Classes of meromorphic multivalent functions with {Montel{\textquoteright}s} normalization}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {66}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a0/} }
Dziok, Jacek. Classes of meromorphic multivalent functions with Montel’s normalization. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 66 (2012) no. 2. http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a0/
[1] Aouf, M. K., Certain classes of meromorphic multivalent functions with positive coefficients, Math. Comput. Modelling 47 (2008), 328-340.
[2] Aouf, M. K., Certain subclasses of meromorphically p-valent functions with positive or negative coefficients, Math. Comput. Modelling 47 (2008), 997-1008.
[3] Aouf, M. K., Silverman, H., Partial sums of certain meromorphic p-valent functions, J. Ineq. Pure and Appl. Math. 7(4) (2006), art. no. 119.
[4] Darwish, H. E., Meromorphic p-valent starlike functions with negative coefficients, J. Ineq. Pure and Appl. Math. 33 (2002), 967-76.
[5] Dziok, J., Classes of meromorphic functions associated with conic regions, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), 765-774.
[6] Dziok, J., Srivastava, H. M., Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct. 14 (2003), 7-18.
[7] Montel, P., Lecons sur les Fonctions Univalentes ou Multivalentes, Gauthier-Villars, Paris, 1933.
[8] Mogra, M. L., Meromorphic multivalent functions with positive coefficients I and II, Math. Japon. 35 (1990), 1-11 and 1089-1098.
[9] Silverman, H., Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997), 221-227.
[10] Silverman, H., Univalent functions with varying arguments, Houston J. Math. 7 (1981), 283-287.
[11] Silvia, E. M., Partial sums of convex functions of order \(\alpha\), Houston. J. Math. 11 (1985), 397-404.
[12] Srivastava, H. M., Owa, S., Certain classes of analytic functions with varying arguments, J. Math. Anal. Appl. 136 (1988), 217-228.
[13] Raina, R. K., Srivastava, H. M., A new class of meromorphically multivalent functions with applications to generalized hypergeometric functions, Math. Comput. Modelling 43 (2006), 350-356.
[14] Wilf, H. S., Subordinating factor sequence for convex maps of the unit circle, Proc. Amer. Math. Soc. 12 (1961), 689-693.