Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2011_65_2_a9, author = {Chuaqui, Martin and Duren, Peter and Osgood, Brad}, title = {On a theorem of {Haimo} regarding concave mappings}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {65}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a9/} }
TY - JOUR AU - Chuaqui, Martin AU - Duren, Peter AU - Osgood, Brad TI - On a theorem of Haimo regarding concave mappings JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2011 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a9/ LA - en ID - AUM_2011_65_2_a9 ER -
Chuaqui, Martin; Duren, Peter; Osgood, Brad. On a theorem of Haimo regarding concave mappings. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2. http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a9/
[1] Ahlfors, L. V., Weill, G., A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc. 13 (1962), 975-978.
[2] Becker, J., Pommerenke, Ch., Uber die quasikonforme Fortsetzung schlichter Funktionen, Math. Z. 161 (1978), 69-80.
[3] Chuaqui, M., Duren, P. and Osgood, B., Schwarzian derivatives of convex mappings, Ann. Acad. Sci. Fenn. Math. 36 (2011), 449-460.
[4] Chuaqui, M., Duren, P. and Osgood, B., Schwarzian derivative criteria for univalence of analytic and harmonic mappings, Math. Proc. Cambridge Philos. Soc. 143 (2007), 473-486.
[5] Chuaqui, M., Duren, P. and Osgood, B., Concave conformal mappings and prevertices of Schwarz-Christoffel mappings, Proc. Amer. Math. Soc., to appear.
[6] Chuaqui, M., Osgood, B., Sharp distortion theorems associated with the Schwarzian derivative, J. London Math. Soc. 48 (1993), 289-298.
[7] Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.
[8] Duren, P., Schuster A., Bergman Spaces, American Mathematical Society, Providence, Rhode Island, 2004.
[9] Gabriel, R. F., The Schwarzian derivative and convex functions, Proc. Amer. Math. Soc. 6 (1955), 58-66.
[10] Haimo, D. T., A note on convex mappings, Proc. Amer. Math. Soc. 7 (1956), 423-428.
[11] Nehari, Z., The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
[12] Nehari, Z., Some criteria of univalence, Proc. Amer. Math. Soc. 5 (1954), 700-704.
[13] Nehari, Z., A property of convex conformal maps, J. Analyse Math. 30 (1976), 390-393.
[14] Pommerenke, Ch., On univalent functions, Bloch functions and VMOA, Math. Ann. 236 (1978), 199-208.