Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2011_65_2_a7, author = {Sobczak-Kne\'c, Magdalena and Starkov, Viktor V. and Szynal, Jan}, title = {Old and new order of linear invariant family of harmonic mappings and the bound for {Jacobian}}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {65}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a7/} }
TY - JOUR AU - Sobczak-Kneć, Magdalena AU - Starkov, Viktor V. AU - Szynal, Jan TI - Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2011 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a7/ LA - en ID - AUM_2011_65_2_a7 ER -
%0 Journal Article %A Sobczak-Kneć, Magdalena %A Starkov, Viktor V. %A Szynal, Jan %T Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2011 %V 65 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a7/ %G en %F AUM_2011_65_2_a7
Sobczak-Kneć, Magdalena; Starkov, Viktor V.; Szynal, Jan. Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2. http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a7/
[1] Bshouty, D., Hengartner, W., Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Skłodowska Sect. A 48 (1994), 13-42.
[2] Duren, P., Harmonic Mappings in the Plane, Cambridge University Press, Cambridge, 2004.
[3] Godula, J., Liczberski, P. and Starkov, V. V., Order of linearly invariant mappings in Cn, Complex Variables Theory Appl. 42 (2000), 89-96.
[4] Pommerenke, Ch., Linear-invariante Familien analytischer Funktionen I, Math. Annalen 155 (1964), 108-154.
[5] Schaubroeck, L. E., Subordination of planar harmonic functions, Complex Variables Theory Appl. 41, (2000), 163-178.
[6] Sheil-Small, T., Constants for planar harmonic mappings, J. London Math. Soc. 42 (1990), 237-248.