Mobius invariant Besov spaces on the unit ball of \(\mathbb{C}^n\)
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2.

Voir la notice de l'article provenant de la source Library of Science

We give new characterizations of the analytic Besov spaces B_p on the unit ball 𝔹 of ℂ^n in terms of oscillations and integral means over some Euclidian balls contained in 𝔹.
Keywords: Besov spaces, conformal Mobius transformation
@article{AUM_2011_65_2_a6,
     author = {Michalska, Ma{\l}gorzata and Nowak, Maria and Sobolewski, Pawe{\l}},
     title = {Mobius invariant {Besov} spaces on the unit ball of {\(\mathbb{C}^n\)}},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a6/}
}
TY  - JOUR
AU  - Michalska, Małgorzata
AU  - Nowak, Maria
AU  - Sobolewski, Paweł
TI  - Mobius invariant Besov spaces on the unit ball of \(\mathbb{C}^n\)
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2011
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a6/
LA  - en
ID  - AUM_2011_65_2_a6
ER  - 
%0 Journal Article
%A Michalska, Małgorzata
%A Nowak, Maria
%A Sobolewski, Paweł
%T Mobius invariant Besov spaces on the unit ball of \(\mathbb{C}^n\)
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2011
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a6/
%G en
%F AUM_2011_65_2_a6
Michalska, Małgorzata; Nowak, Maria; Sobolewski, Paweł. Mobius invariant Besov spaces on the unit ball of \(\mathbb{C}^n\). Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2. http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a6/

[1] Alfors, L., Mobius Transformations in Several Dimensions, Ordway Professorship Lectures in Mathematics. University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981.

[2] Duren, P., Weir, R., The pseudohyperbolic metric and Bergman spaces in the ball, Trans. Amer. Math. Soc. 359 (2007), 63-76.

[3] Hahn, K. T., Youssfi, E. H., Mobius invariant Besov p-spaces and Hankel operators in the Bergman space on the unit ball of \(\mathbb{C}^n\), Complex Variables Theory Appl. 17 (1991), 89-104.

[4] Li, S., Wulan, H., Besov space on the unit ball of \(\mathbb{C}^n\), Indian J. Math. 48 (2006), no. 2, 177-186.

[5] Li, S., Wulan, H., Zhao, R. and Zhu, K., A characterization of Bergman spaces on the unit ball of \(\mathbb{C}^n\), Glasgow Math. J. 51 (2009), 315-330.

[6] Holland, F., Walsh, D., Criteria for membership of Bloch space and its subspace BMOA, Math. Ann. 273 (1986), no. 2, 317-335.

[7] Li, S., Wulan, H. and Zhu, K., A characterization of Bergman spaces on the unit ball of \(\mathbb{C}^n\), II, Canadian Math. Bull., to appear.

[8] Nowak, M., Bloch space and Mobius invariant Besov spaces on the unit ball of \(\mathbb{C}^n\), Complex Variables Theory Appl. 44 (2001), 1-12.

[9] Ouyang, C., Yang, W. and Zhao, R., Mobius invariant \(Q_p\) spaces associated with the Green’s function on the unit ball of \(\mathbb{C}^n\), Pacific J. Math. 182 (1998), no. 1, 69-99.

[10] Pavlovic, M., A formula for the Bloch norm of a \(C^1\)-function on the unit ball of \(\mathbb{C}^n\),

[11] Czechoslovak Math. J. 58(133) (2008), no. 4, 1039-1043.

[12] Pavlovic, M., On the Holland-Walsh characterization of Bloch functions, Proc. Edinb. Math. Soc. 51 (2008), 439-441.

[13] Ren, G., Tu, C., Bloch space in the unit ball of \(\mathbb{C}^n\), Proc. Amer. Math. Soc. 133 (2004), no. 3, 719-726.

[14] Rudin, W., Function Theory in the Unit Ball of \(\mathbb{C}^n\), Springer-Verlag, New York, 1980.

[15] Stroethoff, K., The Bloch space and Besov space of analytic functions, Bull. Austral. Math. Soc. 54 (1996), 211-219.

[16] Ullrich, D., Radial limits of M-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), no. 2, 501-518.

[17] Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.