Gauss curvature estimates for minimal graphs
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2.

Voir la notice de l'article provenant de la source Library of Science

We estimate the Gauss curvature of nonparametric minimal surfaces over the two-slit plane ℂ∖ ((-∞,-1]∪ [1,∞)) at points above the interval (-1, 1).
@article{AUM_2011_65_2_a5,
     author = {Nowak, Maria and Wo{\l}oszkiewicz, Magdalena},
     title = {Gauss curvature estimates for minimal graphs},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a5/}
}
TY  - JOUR
AU  - Nowak, Maria
AU  - Wołoszkiewicz, Magdalena
TI  - Gauss curvature estimates for minimal graphs
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2011
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a5/
LA  - en
ID  - AUM_2011_65_2_a5
ER  - 
%0 Journal Article
%A Nowak, Maria
%A Wołoszkiewicz, Magdalena
%T Gauss curvature estimates for minimal graphs
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2011
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a5/
%G en
%F AUM_2011_65_2_a5
Nowak, Maria; Wołoszkiewicz, Magdalena. Gauss curvature estimates for minimal graphs. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2. http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a5/

[1] Duren, P., Harmonic Mappings in the Plane, Cambridge Univ. Press, Cambridge, 2004.

[2] Grigorian, A., Szapiel, W., Two-slit harmonic mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 49 (1995), 59-84.

[3] Hengartner, W., Schober, G., Curvature estimates for some minimal surfaces, Complex Analysis, Articles Dedicated to Albert Pfluger on the Occasion of his 80th Birthday, J. Hersch and A. Huber (eds.), Birh¨auser Verlag, Basel, 1988, pp. 87-110.

[4] Jun, S. H., Curvature estimates for minimal surfaces, Proc. Amer. Math. Soc. 114 (1992), no. 2, 527-533.

[5] Livingston, A. E., Univalent harmonic mappings II, Ann. Polon. Math. 67 (1997), no. 2, 131-145.