Gauss curvature estimates for minimal graphs
Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 65 (2011) no. 2
Cet article a éte moissonné depuis la source Library of Science
We estimate the Gauss curvature of nonparametric minimal surfaces over the two-slit plane ℂ∖ ((-∞,-1]∪ [1,∞)) at points above the interval (-1, 1).
@article{AUM_2011_65_2_a5,
author = {Nowak, Maria and Wo{\l}oszkiewicz, Magdalena},
title = {Gauss curvature estimates for minimal graphs},
journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica},
year = {2011},
volume = {65},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a5/}
}
Nowak, Maria; Wołoszkiewicz, Magdalena. Gauss curvature estimates for minimal graphs. Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 65 (2011) no. 2. http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a5/
[1] Duren, P., Harmonic Mappings in the Plane, Cambridge Univ. Press, Cambridge, 2004.
[2] Grigorian, A., Szapiel, W., Two-slit harmonic mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 49 (1995), 59-84.
[3] Hengartner, W., Schober, G., Curvature estimates for some minimal surfaces, Complex Analysis, Articles Dedicated to Albert Pfluger on the Occasion of his 80th Birthday, J. Hersch and A. Huber (eds.), Birh¨auser Verlag, Basel, 1988, pp. 87-110.
[4] Jun, S. H., Curvature estimates for minimal surfaces, Proc. Amer. Math. Soc. 114 (1992), no. 2, 527-533.
[5] Livingston, A. E., Univalent harmonic mappings II, Ann. Polon. Math. 67 (1997), no. 2, 131-145.