Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2011_65_2_a2, author = {Naraniecka, Iwona and Szynal, Jan and Tatarczak, Anna}, title = {An extension of typically-real functions and associated orthogonal polynomials}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {65}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a2/} }
TY - JOUR AU - Naraniecka, Iwona AU - Szynal, Jan AU - Tatarczak, Anna TI - An extension of typically-real functions and associated orthogonal polynomials JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2011 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a2/ LA - en ID - AUM_2011_65_2_a2 ER -
%0 Journal Article %A Naraniecka, Iwona %A Szynal, Jan %A Tatarczak, Anna %T An extension of typically-real functions and associated orthogonal polynomials %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2011 %V 65 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a2/ %G en %F AUM_2011_65_2_a2
Naraniecka, Iwona; Szynal, Jan; Tatarczak, Anna. An extension of typically-real functions and associated orthogonal polynomials. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2. http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a2/
[1] Chihara, T. S., An Introduction to Orthogonal Polynomials, Mathematics and its Applications. Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978.
[2] Goluzin, G. M., On typically real functions, Mat. Sbornik N.S. 27(69) (1950), 201-218 (Russian).
[3] Gasper, G., q-extensions of Clausen’s formula and of the inequalities used by de Branges in his proof of the Bieberbach, Robertson and Milin conjectures, SIAM J.
[4] Math. Anal. 20 (1989), no. 4, 1019-1034.
[5] Gasper, G., Rahman, M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35. Cambridge University Press, Cambridge, 1990.
[6] Kiepiela, K., Klimek, D., An extension of the Chebyshev polynomials, J. Comput. Appl. Math. 178 (2005), no. 1-2, 305-312.
[7] Koczan, L., Szapiel, W., Sur certaines classes de fonctions holomorphes definies par une integrale de Stieltjes, Ann. Univ. Mariae Curie-Skłodowska Sect. A 28 (1974),
[8] 39-51 (1976).
[9] Koczan, L., Zaprawa, P., Domains of univalence for typically-real odd functions, Complex Var. Theory Appl. 48 (2003), no. 1, 1-17.
[10] Mason, J. C., Handscomb, D. C., Chebyshev Polynomials, Chapman and Hall/ CRC, Boca Raton, FL, 2003.
[11] Robertson, M. S., On the coefficients of typically-real function, Bull. Amer. Math. Soc. 41 (1935), no. 8, 565-572.
[12] Robertson, M. S., The sum of univalent functions, Duke Math. J. 37 (1970), 411-419.
[13] Rogosinski, W., Uber positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), no. 1, 93-121.