The Lowner-Kufarev representations for domains with analytic boundaries
Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 65 (2011) no. 2
Cet article a éte moissonné depuis la source Library of Science
We consider the Lowner-Kufarev differential equations generating univalent maps of the unit disk onto domains bounded by analytic Jordan curves. A solution to the problem of the maximal lifetime shows how long a representation of such functions admits using infinitesimal generators analytically extendable outside the unit disk. We construct a Lowner-Kufarev chain consisting of univalent quadratic polynomials and compare the Lowner-Kufarev representations of bounded and arbitrary univalent functions.
Keywords:
Lowner-Kufarev equation, analytic continuation, univalent polynomials, bounded univalent functions
@article{AUM_2011_65_2_a15,
author = {Prokhorov, Dmitri},
title = {The {Lowner-Kufarev} representations for domains with analytic boundaries},
journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica},
year = {2011},
volume = {65},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a15/}
}
Prokhorov, Dmitri. The Lowner-Kufarev representations for domains with analytic boundaries. Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 65 (2011) no. 2. http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a15/
[1] Kufarev, P. P., On one-parametric families of analytic functions, Mat. Sbornik N. S. 13(55) (1943), 87-118 (Russian).
[2] Lowner, K., Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), no. 1-2, 103-121.
[3] Markina, I., Vasil’ev, A., Virasoro algebra and dynamics in the space of univalent functions, Contemp. Math. 525 (2010), 85-116.
[4] Pommerenke, Ch., Uber die Subordination analytischer Funktionen, J. Reine Angew. Math. 218 (1965), 159-173.
[5] Pommerenke, Ch., Univalent Functions, Vandenhoeck Ruprecht, Gottingen, 1975.
[6] Roth, O., Schippers, E., The Loewner and Hadamard variations, Illinois J. Math. 52 (2008), no. 4, 1399-1415.