Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2011_65_1_a7, author = {Ida, Cristian}, title = {Some framed \(f\)-structures on transversally {Finsler} foliations}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {65}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a7/} }
Ida, Cristian. Some framed \(f\)-structures on transversally Finsler foliations. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 1. http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a7/
[1] Abate, M., Patrizio, G., Finsler Metrics - A Global Approach, Lecture Notes in Math., 1591, Springer-Verlag, Berlin, 1994.
[2] Anastasiei, M., A framed f-structure on tangent bundle of a Finsler space, An. Univ. Bucuresti, Mat.-Inf., 49 (2000), 3-9.
[3] Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemannian Finsler Geometry, Graduate Texts in Math., 200, Springer-Verlag, New York, 2000.
[4] Bejancu, A., Farran, H. R., On the vertical bundle of a pseudo-Finsler manifold, Int. J. Math. Math. Sci. 22 (3) (1997), 637-642.
[5] Gırtu, M., An almost paracontact structure on the indicatrix bundle of a Finsler space, Balkan J. Geom. Appl. 7(2) (2002), 43-48.
[6] Gırtu, M., A framed \(f(3,-1)\)-structure on the tangent bundle of a Lagrange space, Demonstratio Math. 37(4) (2004), 955-961.
[7] Hasegawa, I., Yamaguchi, K. and Shimada, H., Sasakian structures on Finsler manifolds, Antonelli, P. L., Miron R. (eds.), Lagrange and Finsler Geometry, Kluwer Acad. Publ., Dordrecht, 1996, 75-80.
[8] Miernowski, A., A note on transversally Finsler foliations, Ann. Univ. Mariae Curie-Skłodowska Sect. A 60 (2006), 57-64.
[9] Miernowski, A., Mozgawa, W., Lift of the Finsler foliations to its normal bundle, Differential Geom. Appl. 24 (2006), 209-214.
[10] Mihai, I., Rosca, R. and Verstraelen, L., Some aspects of the differential geometry of vector fields, PADGE, Katholieke Univ. Leuven, vol. 2 (1996).
[11] Miron, R., Anastasiei, M., The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Acad. Publ., Dordrecht, 1994.
[12] Popescu, P., Popescu, M., Lagrangians adapted to submersions and foliations, Differential Geom. Appl. 27 (2009), 171-178.
[13] Singh, K. D., Singh, R., Some \(f(3,\varepsilon)\)-structure manifold, Demonstratio Math. 10 (3-4) (1977), 637-645.
[14] Vaisman, I., Lagrange geometry on tangent manifolds, Int. J. Math. Math. Sci. 51 (2003), 3241-3266.
[15] Yano, K., On a structure defined by a tensor field of type (1, 1) satisfying \(f^3 +f = 0\), Tensor (N.S.) 14 (1963), 99-109.