Some framed \(f\)-structures on transversally Finsler foliations
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 1.

Voir la notice de l'article provenant de la source Library of Science

Some problems concerning to Liouville distribution and framed f-structures are studied on the normal bundle of the lifted Finsler foliation to its normal bundle. It is shown that the Liouville distribution of transversally Finsler foliations is an integrable one and some natural framed f(3,ε)-structures of corank 2 exist on the normal bundle of the lifted Finsler foliation.
Keywords: Transversally Finsler foliation, Liouville distribution, framed f-structures
@article{AUM_2011_65_1_a7,
     author = {Ida, Cristian},
     title = {Some framed \(f\)-structures on transversally {Finsler} foliations},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a7/}
}
TY  - JOUR
AU  - Ida, Cristian
TI  - Some framed \(f\)-structures on transversally Finsler foliations
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2011
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a7/
LA  - en
ID  - AUM_2011_65_1_a7
ER  - 
%0 Journal Article
%A Ida, Cristian
%T Some framed \(f\)-structures on transversally Finsler foliations
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2011
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a7/
%G en
%F AUM_2011_65_1_a7
Ida, Cristian. Some framed \(f\)-structures on transversally Finsler foliations. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 1. http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a7/

[1] Abate, M., Patrizio, G., Finsler Metrics - A Global Approach, Lecture Notes in Math., 1591, Springer-Verlag, Berlin, 1994.

[2] Anastasiei, M., A framed f-structure on tangent bundle of a Finsler space, An. Univ. Bucuresti, Mat.-Inf., 49 (2000), 3-9.

[3] Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemannian Finsler Geometry, Graduate Texts in Math., 200, Springer-Verlag, New York, 2000.

[4] Bejancu, A., Farran, H. R., On the vertical bundle of a pseudo-Finsler manifold, Int. J. Math. Math. Sci. 22 (3) (1997), 637-642.

[5] Gırtu, M., An almost paracontact structure on the indicatrix bundle of a Finsler space, Balkan J. Geom. Appl. 7(2) (2002), 43-48.

[6] Gırtu, M., A framed \(f(3,-1)\)-structure on the tangent bundle of a Lagrange space, Demonstratio Math. 37(4) (2004), 955-961.

[7] Hasegawa, I., Yamaguchi, K. and Shimada, H., Sasakian structures on Finsler manifolds, Antonelli, P. L., Miron R. (eds.), Lagrange and Finsler Geometry, Kluwer Acad. Publ., Dordrecht, 1996, 75-80.

[8] Miernowski, A., A note on transversally Finsler foliations, Ann. Univ. Mariae Curie-Skłodowska Sect. A 60 (2006), 57-64.

[9] Miernowski, A., Mozgawa, W., Lift of the Finsler foliations to its normal bundle, Differential Geom. Appl. 24 (2006), 209-214.

[10] Mihai, I., Rosca, R. and Verstraelen, L., Some aspects of the differential geometry of vector fields, PADGE, Katholieke Univ. Leuven, vol. 2 (1996).

[11] Miron, R., Anastasiei, M., The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Acad. Publ., Dordrecht, 1994.

[12] Popescu, P., Popescu, M., Lagrangians adapted to submersions and foliations, Differential Geom. Appl. 27 (2009), 171-178.

[13] Singh, K. D., Singh, R., Some \(f(3,\varepsilon)\)-structure manifold, Demonstratio Math. 10 (3-4) (1977), 637-645.

[14] Vaisman, I., Lagrange geometry on tangent manifolds, Int. J. Math. Math. Sci. 51 (2003), 3241-3266.

[15] Yano, K., On a structure defined by a tensor field of type (1, 1) satisfying \(f^3 +f = 0\), Tensor (N.S.) 14 (1963), 99-109.