On subordination for classes of non-Bazilevic type
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 2.

Voir la notice de l'article provenant de la source Library of Science

We give some subordination results for new classes of normalized analytic functions containing differential operator of non-Bazilevic type in the open unit disk. By using Jack’s lemma, sufficient conditions for this type of operator are also discussed.
Keywords: Fractional calculus, subordination, non-Bazilevic function, Jack’s lemma
@article{AUM_2010_54_2_a6,
     author = {Ibrahim, Rabha W. and Darus, Maslina and Tuneski, Nikola},
     title = {On subordination for classes of {non-Bazilevic} type},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a6/}
}
TY  - JOUR
AU  - Ibrahim, Rabha W.
AU  - Darus, Maslina
AU  - Tuneski, Nikola
TI  - On subordination for classes of non-Bazilevic type
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2010
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a6/
LA  - en
ID  - AUM_2010_54_2_a6
ER  - 
%0 Journal Article
%A Ibrahim, Rabha W.
%A Darus, Maslina
%A Tuneski, Nikola
%T On subordination for classes of non-Bazilevic type
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2010
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a6/
%G en
%F AUM_2010_54_2_a6
Ibrahim, Rabha W.; Darus, Maslina; Tuneski, Nikola. On subordination for classes of non-Bazilevic type. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 2. http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a6/

[1] Darus, M., Ibrahim, R. W., Coefficient inequalities for a new class of univalent functions, Lobachevskii J. Math. 29(4) (2008), 221-229.

[2] Ibrahim, R. W., Darus, M., On subordination theorems for new classes of normalize analytic functions, Appl. Math. Sci. (Ruse) 2(56) (2008), 2785-2794.

[3] Ibrahim, R. W., Darus, M., Subordination for new classes of non-Bazilevic type, UNRI-UKM Symposium, KE-4 (2008).

[4] Ibrahim, R. W., Darus, M., Differential subordination results for new classes of the family \(\mathcal{E}(\Phi, \Psi)\), JIPAM. J. Ineq. Pure Appl. Math. 10(1) (2009), Art. 8, 9 pp.

[5] Jack, I. S., Functions starlike and convex of order k, J. London Math. Soc. 3 (1971), 469-474 .

[6] Miller, S. S., Mocanu, P. T., Differential Subordinantions. Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.

[7] Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, 1993.

[8] Obradovic, M., A class of univalent functions, Hokkaido Math. J. 27(2) (1998), 329-335.

[9] Raina, R. K., On certain class of analytic functions and applications to fractional calculus operator, Integral Transform. Spec. Funct. 5 (1997), 247-260.

[10] Raina, R. K., Srivastava, H. M., A certain subclass of analytic functions associated with operators of fractional calculus, Comput. Math. Appl. 32 (1996), 13-19.

[11] Shanmugam, T. N., Ravichangran, V. and Sivasubramanian, S., Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl. 3(1) (2006), 1-11.

[12] Srivastava, H. M., Owa, S. (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1989.

[13] Srivastava, H. M., Owa, S. (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992.

[14] Tuneski, N., Darus, M., Fekete-Szego functional for non-Bazilevic functions, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 18(2) (2002), 63-65.

[15] Wang, Z., Gao, C. and Liao, M., On certain generalized class of non-Bazilevic functions, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 21(2) (2005), 147-154.