On Poncelet’s porism
Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 54 (2010) no. 2
Cet article a éte moissonné depuis la source Library of Science
We consider circular annuli with Poncelet’s porism property. We prove two identities which imply Chapple’s, Steiner’s and other formulas. All porisms can be expressed in the form in which elliptic functions are not used.
Keywords:
Porism, annulus, bicentric polygon
@article{AUM_2010_54_2_a5,
author = {Cie\'slak, Waldemar and Szczygielska, El\.zbieta},
title = {On {Poncelet{\textquoteright}s} porism},
journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica},
year = {2010},
volume = {54},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a5/}
}
Cieślak, Waldemar; Szczygielska, Elżbieta. On Poncelet’s porism. Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 54 (2010) no. 2. http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a5/
[1] Bos, H. J . M., Kers, C., Dort, F. and Raven, D. W., Poncelet’s closure theorem, Expo. Math. 5 (1987) 289-364.
[2] Cieślak, W., Szczygielska, E., Circuminscribed polygons in a plane annulus, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 49-53.
[3] Kerawala, S. M., Poncelet porism in two circles, Bull. Calcutta Math. Soc. 39 (1947), 85-105.
[4] Weisstein, E. W., Poncelet’s Porism, From Math World - A Wolfram Web Resource. http://mathworld.wolfram.com/PonceletsPorism.html