Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2010_54_2_a4, author = {Aouf, Mohamed K. and Seoudy, Tamer M.}, title = {On differential sandwich theorems of analytic functions defined by certain linear operator}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {54}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a4/} }
TY - JOUR AU - Aouf, Mohamed K. AU - Seoudy, Tamer M. TI - On differential sandwich theorems of analytic functions defined by certain linear operator JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2010 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a4/ LA - en ID - AUM_2010_54_2_a4 ER -
%0 Journal Article %A Aouf, Mohamed K. %A Seoudy, Tamer M. %T On differential sandwich theorems of analytic functions defined by certain linear operator %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2010 %V 54 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a4/ %G en %F AUM_2010_54_2_a4
Aouf, Mohamed K.; Seoudy, Tamer M. On differential sandwich theorems of analytic functions defined by certain linear operator. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 2. http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a4/
[1] Ali, R. M., Ravichandran, V. and Subramanian, K. G., Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15(1) (2004), 87-94.
[2] Al-Oboudi, F., On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.
[3] Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
[4] Bulboaca, T., Classes of first order differential superordinations, Demonstratio Math. 35(2) (2002), 287-292.
[5] Bulboaca, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[6] Carlson, B. C., Shaffer, D. B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.
[7] Cata¸s, A., Oros, G. I. and Oros, G., Differential subordinations associated with multiplier transformations, Abstr. Appl. Anal. 2008 (2008), Art. ID 845724, 1-11.
[8] Cho, N. E., Kim, T. G., Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40(3) (2003), 399-410.
[9] Dziok, J., Srivastava, H. M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.
[10] Dziok, J., Srivastava, H. M., Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math. (Kyungshang) 5 (2002), 115-125.
[11] Dziok, J., Srivastava, H. M., Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct. 14 (2003), 7-18.
[12] Hohlov, Yu. E., Operators and operations on the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat. 10 (1978), 83-89 (Russian).
[13] Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-658.
[14] Livingston, A. E., On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966), 352-357.
[15] Miller, S. S., Mocanu, P. T., Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York, Basel, 2000.
[16] Miller, S. S., Mocanu, P. T., Subordinates of differential superordinations, Complex Var. Theory Appl. 48(10) (2003), 815-826.
[17] Nechita, V. O., Differential subordinations and superordinations for analytic functions defined by the generalized S˘al˘agean derivative, Acta Univ. Apulensis 16 (2008), 143-156.
[18] Owa, S., Srivastava, H. M., Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077.
[19] Ruscheweyh, St., New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[20] Saitoh, H., A linear operator and its applications of first order differential subordinations, Math. Japon. 44 (1996), 31-38.
[21] Salagean, G. S., Subclasses of univalent functions, Complex analysis - fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math. 1013, Springer-Verlag, Berlin, 1983.
[22] Selvaraj, C., Karthikeyan, K. R., Differential subordination and superordination for certain subclasses of analytic functions, Far East J. Math. Sci. (FJMS) 29(2) (2008), 419-430.
[23] Shanmugam, T. N., Ravichandran, V. and Sivasubramanian, S., Differential sandwich theorems for some subclasses of analytic functions, Aust. J. Math. Anal. Appl. 3(1) (2006), Art. 8, 1-11.
[24] Tuneski, N., On certain sufficient conditions for starlikeness, Internat. J. Math. Math. Sci. 23(8) (2000), 521-527.