Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2010_54_2_a3, author = {Wi\'snicki, Andrzej}, title = {On a nonstandard approach to invariant measures for {Markov} operators}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {54}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a3/} }
Wiśnicki, Andrzej. On a nonstandard approach to invariant measures for Markov operators. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 2. http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a3/
[1] Albeverio, S., Fenstad, J. E., Høegh-Krohn, R. and Lindstrøm, T., Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, Orlando, 1986.
[2] Anderson, R. M., Star-finite representations of measure spaces, Trans. Amer. Math. Soc. 271 (1982), 667-687.
[3] Benci, V., Di Nasso, M. and Forti, M., The eightfold path to nonstandard analysis, Nonstandard Methods and Applications in Mathematics, Lecture Notes in Logic, 25, ASL, La Jolla, CA, 2006.
[4] Chang, C. C., Keisler, H. J., Model Theory, 3rd edition, North-Holland, Amsterdam, 1990.
[5] Di Nasso, M., On the foundations of nonstandard mathematics, Math. Japonica 50 (1999), 131-160.
[6] Dudley, R. M., Real Analysis and Probability, Wadsworth Brooks/Cole, Pacific Grove, CA, 1989.
[7] Foguel, S. R., Existence of invariant measures for Markov processes. II, Proc. Amer. Math. Soc. 17 (1966), 387-389.
[8] Landers, D., Rogge, L., Universal Loeb-measurability of sets and of the standard part map with applications, Trans. Amer. Math. Soc. 304 (1987), 229-243.
[9] Lasota, A., From fractals to stochastic differential equations, Chaos — The Interplay Between Stochastic and Deterministic Behaviour, Karpacz ’95, (Eds. P. Garbaczewski, M. Wolf and A. Weron), 235-255, Springer-Verlag, Berlin, 1995.
[10] Lasota, A., Mackey, M. C., Chaos, Fractals and Noise, Stochastic Aspects of Dynamics, Springer-Verlag, Berlin, 1994.
[11] Lasota, A., Szarek, T., Lower bound technique in the theory of a stochastic differential equation, J. Differential Equations 231 (2006), 513-533.
[12] Lasota, A., Yorke, J. A., Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77.
[13] Loeb, P. A., Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122.
[14] Loeb, P. A., Wolff, M. (Eds.), Nonstandard Analysis for the Working Mathematician, Kluwer Academic Publishers, Dordrecht, 2000.
[15] Oxtoby, J. C., Ulam, S., On the existence of a measure invariant under a transformation, Ann. Math. 40 (1939), 560-566.
[16] Sims, B., Ultra-techniques in Banach Space Theory, Queen’s Papers in Pure and Applied Math., Vol. 60, Queen’s University, Kingston, Ont., 1982.
[17] Stettner, Ł., Remarks on ergodic conditions for Markov processes on Polish spaces, Bull. Polish Acad. Sci. Math. 42 (1994), 103-114.
[18] Szarek, T., The stability of Markov operators on Polish spaces, Studia Math. 143 (2000), 145-152.
[19] Szarek, T., Invariant measures for Markov operators with application to function systems, Studia Math. 154 (2003), 207-222.
[20] Szarek, T., Invariant measures for nonexpansive Markov operators on Polish spaces, Dissertationes Math. 415 (2003), 62 pp.