Fixed points of periodic mappings in Hilbert spaces
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 2.

Voir la notice de l'article provenant de la source Library of Science

In this paper we give new estimates for the Lipschitz constants of n-periodic mappings in Hilbert spaces, in order to assure the existence of fixed points and retractions on the fixed point set.
Keywords: Fixed point, retractions, periodic mappings
@article{AUM_2010_54_2_a2,
     author = {Perez Garcia, Victor and Fetter Nathansky, Helga},
     title = {Fixed points of periodic mappings in {Hilbert} spaces},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a2/}
}
TY  - JOUR
AU  - Perez Garcia, Victor
AU  - Fetter Nathansky, Helga
TI  - Fixed points of periodic mappings in Hilbert spaces
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2010
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a2/
LA  - en
ID  - AUM_2010_54_2_a2
ER  - 
%0 Journal Article
%A Perez Garcia, Victor
%A Fetter Nathansky, Helga
%T Fixed points of periodic mappings in Hilbert spaces
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2010
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a2/
%G en
%F AUM_2010_54_2_a2
Perez Garcia, Victor; Fetter Nathansky, Helga. Fixed points of periodic mappings in Hilbert spaces. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 2. http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a2/

[1] Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.

[2] Goebel, K., Złotkiewicz, E., Some fixed point theorems in Banach spaces, Colloq. Math. 23 (1971), 103-106.

[3] Górnicki, J., Pupka, K., Fixed points of rotative mappings in Banach spaces, J. Nonlinear Convex Anal. 6(2) (2005), 217-233.

[4] Kaczor, W., Koter-Mórgowska M., Rotative mappings and mappings with constant displacement, Handbook of Metric Fixed Point Theory, Kluwer Academic Publisher, Dordrecht, 2001, 323-337.

[5] Koter-Mórgowska, M., Rotative mappings in Hilbert space, J. Nonlinear Convex Anal. 1(3) (2000), 295-304.