Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2010_54_1_a6, author = {Koczan, Leopold and Tr\k{a}bka-Wi\k{e}c{\l}aw, Katarzyna}, title = {Subclasses of typically real functions determined by some modular inequalities}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {54}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a6/} }
TY - JOUR AU - Koczan, Leopold AU - Trąbka-Więcław, Katarzyna TI - Subclasses of typically real functions determined by some modular inequalities JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2010 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a6/ LA - en ID - AUM_2010_54_1_a6 ER -
%0 Journal Article %A Koczan, Leopold %A Trąbka-Więcław, Katarzyna %T Subclasses of typically real functions determined by some modular inequalities %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2010 %V 54 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a6/ %G en %F AUM_2010_54_1_a6
Koczan, Leopold; Trąbka-Więcław, Katarzyna. Subclasses of typically real functions determined by some modular inequalities. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 1. http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a6/
[1] Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.
[2] Goodman, A. W., Univalent Functions, Mariner Publ. Co., Tampa, 1983.
[3] Koczan, L., On classes generated by bounded functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (2) (1998), 95-101.
[4] Koczan, L., Szapiel, W., Extremal problems in some classes of measures (IV). Typically real functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 43 (1989), 55-68.
[5] Koczan, L., Zaprawa, P., On typically real functions with n-fold symmetry, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (2) (1998), 103-112.
[6] Rogosinski, W. W., Uber positive harmonische Entwicklugen und tipisch-reelle Potenzreichen, Math. Z. 35 (1932), 93–121 (German).