Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2010_54_1_a0, author = {Bhuvaneswari, R. and Karunakaran, V.}, title = {Boehmians of type {S} and their {Fourier} transforms}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {54}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a0/} }
Bhuvaneswari, R.; Karunakaran, V. Boehmians of type S and their Fourier transforms. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 1. http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a0/
[1] Chung, J., Chung, S. Y. and Kim, D., A characterization of the Gelfand-Shilov spaces via Fourier transform, Prod. Amer. Math. Soc. 124 (1996), 2101-2108.
[2] Chung, S. Y., Kim, D. and Lee, S., Characterization for Beurling–Bjorck space and Schwartz space, Prod. Amer. Math. Soc. 125 (11) (1997), 3229-3234.
[3] Gelfand, I. M., Shilov, G. E., Generalized Functions, Vol. I and II, Academic Press, New York, 1967.
[4] Ishihara, T., On the structure of S space, Osaka Math. J. 13 (1961), 251-264.
[5] Kashpirovskii, A. I., Equality of the spaces \(S_{\alpha}^{\beta}\) and \(S_{\alpha}\cap S^{\beta}\), (English. Russian original) Funct. Anal. Appl. 14, 129 (1980); translation from Funkts. Anal. Prilozh. 14, No.2,
[6] 60 (1980).
[7] Karunakaran, V., Kalpakam, N. V., Boehmians and Fourier transform, Integral Transform. Spec. Funct. 9 (3) (2000), 197-216.
[8] Mikusiński, P., Convergence of Boehmians, Japan J. Math. 9 (1983), 159-179.
[9] Mikusiński, P., Boehmians and generalized functions, Acta. Math. Hung. 51 (1988), 271-281.
[10] Zemanian, A. H., Distribution Theory and Transform Analysis, McGraw-Hill Book Co., New York, 1965.