Boehmians of type S and their Fourier transforms
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 1.

Voir la notice de l'article provenant de la source Library of Science

Function spaces of type S are introduced and investigated in the literature. They are also applied to study the Cauchy problem. In this paper we shall extend the concept of these spaces to the context of Boehmian spaces and study the Fourier transform theory on these spaces. These spaces enable us to combine the theory of Fourier transform on these function spaces as well as their dual spaces.
Keywords: Boehmians, spaces of type S, Fourier transform
@article{AUM_2010_54_1_a0,
     author = {Bhuvaneswari, R. and Karunakaran, V.},
     title = {Boehmians of type {S} and their {Fourier} transforms},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a0/}
}
TY  - JOUR
AU  - Bhuvaneswari, R.
AU  - Karunakaran, V.
TI  - Boehmians of type S and their Fourier transforms
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2010
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a0/
LA  - en
ID  - AUM_2010_54_1_a0
ER  - 
%0 Journal Article
%A Bhuvaneswari, R.
%A Karunakaran, V.
%T Boehmians of type S and their Fourier transforms
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2010
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a0/
%G en
%F AUM_2010_54_1_a0
Bhuvaneswari, R.; Karunakaran, V. Boehmians of type S and their Fourier transforms. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 1. http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a0/

[1] Chung, J., Chung, S. Y. and Kim, D., A characterization of the Gelfand-Shilov spaces via Fourier transform, Prod. Amer. Math. Soc. 124 (1996), 2101-2108.

[2] Chung, S. Y., Kim, D. and Lee, S., Characterization for Beurling–Bjorck space and Schwartz space, Prod. Amer. Math. Soc. 125 (11) (1997), 3229-3234.

[3] Gelfand, I. M., Shilov, G. E., Generalized Functions, Vol. I and II, Academic Press, New York, 1967.

[4] Ishihara, T., On the structure of S space, Osaka Math. J. 13 (1961), 251-264.

[5] Kashpirovskii, A. I., Equality of the spaces \(S_{\alpha}^{\beta}\) and \(S_{\alpha}\cap S^{\beta}\), (English. Russian original) Funct. Anal. Appl. 14, 129 (1980); translation from Funkts. Anal. Prilozh. 14, No.2,

[6] 60 (1980).

[7] Karunakaran, V., Kalpakam, N. V., Boehmians and Fourier transform, Integral Transform. Spec. Funct. 9 (3) (2000), 197-216.

[8] Mikusiński, P., Convergence of Boehmians, Japan J. Math. 9 (1983), 159-179.

[9] Mikusiński, P., Boehmians and generalized functions, Acta. Math. Hung. 51 (1988), 271-281.

[10] Zemanian, A. H., Distribution Theory and Transform Analysis, McGraw-Hill Book Co., New York, 1965.