Voir la notice de l'article provenant de la source Analele Stiintifice ale Universitatii Ovidius Constanta website
@article{ASUO_2021_XXIX_2_a8, author = {Attila Berczes and Maohua Le and Istvan Pink, and Gokhan Soydan ~ }, title = {A note on the ternary {Diophantine} equation $x^2 {\textendash} y^{2m} = z^n$}, journal = {Analele Universit\u{a}\c{t}ii "Ovidius" Constan\c{t}a Seria Matematic\u{a}}, publisher = {mathdoc}, volume = {XXIX}, number = {2}, year = {2021}, url = {http://geodesic.mathdoc.fr/item/ASUO_2021_XXIX_2_a8/} }
TY - JOUR AU - Attila Berczes AU - Maohua Le AU - Istvan Pink, AU - Gokhan Soydan TI - A note on the ternary Diophantine equation $x^2 – y^{2m} = z^n$ JO - Analele Universităţii "Ovidius" Constanţa Seria Matematică PY - 2021 VL - XXIX IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ASUO_2021_XXIX_2_a8/ ID - ASUO_2021_XXIX_2_a8 ER -
%0 Journal Article %A Attila Berczes %A Maohua Le %A Istvan Pink, %A Gokhan Soydan %T A note on the ternary Diophantine equation $x^2 – y^{2m} = z^n$ %J Analele Universităţii "Ovidius" Constanţa Seria Matematică %D 2021 %V XXIX %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ASUO_2021_XXIX_2_a8/ %F ASUO_2021_XXIX_2_a8
Attila Berczes; Maohua Le; Istvan Pink,; Gokhan Soydan . A note on the ternary Diophantine equation $x^2 – y^{2m} = z^n$. Analele Universităţii "Ovidius" Constanţa Seria Matematică, XXIX (2021) no. 2. http://geodesic.mathdoc.fr/item/ASUO_2021_XXIX_2_a8/