Infimum and supremum completeness properties of ordered sets without axioms
Analele Universităţii "Ovidius" Constanţa Seria Matematică, XVI (2008) no. 2

Voir la notice de l'article provenant de la source Analele Stiintifice ale Universitatii Ovidius Constanta website

@article{ASUO_2008_XVI_2_a5,
     author = {
						Zoltan BOROS and Arpad SZAZ
						},
     title = {Infimum and supremum completeness properties of ordered sets without axioms},
     journal = {Analele Universit\u{a}\c{t}ii "Ovidius" Constan\c{t}a Seria Matematic\u{a}},
     publisher = {mathdoc},
     volume = {XVI},
     number = {2},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/ASUO_2008_XVI_2_a5/}
}
TY  - JOUR
AU  - 
						Zoltan BOROS
AU  - Arpad SZAZ
						
TI  - Infimum and supremum completeness properties of ordered sets without axioms
JO  - Analele Universităţii "Ovidius" Constanţa Seria Matematică
PY  - 2008
VL  - XVI
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ASUO_2008_XVI_2_a5/
ID  - ASUO_2008_XVI_2_a5
ER  - 
%0 Journal Article
%A 
						Zoltan BOROS
%A Arpad SZAZ
						
%T Infimum and supremum completeness properties of ordered sets without axioms
%J Analele Universităţii "Ovidius" Constanţa Seria Matematică
%D 2008
%V XVI
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ASUO_2008_XVI_2_a5/
%F ASUO_2008_XVI_2_a5
						Zoltan BOROS; Arpad SZAZ
						. Infimum and supremum completeness properties of ordered sets without axioms. Analele Universităţii "Ovidius" Constanţa Seria Matematică, XVI (2008) no. 2. http://geodesic.mathdoc.fr/item/ASUO_2008_XVI_2_a5/