Infimum and supremum completeness properties of ordered sets without axioms
Analele Universităţii "Ovidius" Constanţa Seria Matematică, XVI (2008) no. 2
Cet article a éte moissonné depuis la source Analele Stiintifice ale Universitatii Ovidius Constanta website
@article{ASUO_2008_XVI_2_a5,
author = {
Zoltan BOROS and Arpad SZAZ
},
title = {
{Infimum} and supremum completeness properties of ordered sets without axioms
},
journal = {Analele Universit\u{a}\c{t}ii "Ovidius" Constan\c{t}a Seria Matematic\u{a}},
year = {2008},
volume = {XVI},
number = {2},
url = {http://geodesic.mathdoc.fr/item/ASUO_2008_XVI_2_a5/}
}
TY - JOUR AU - Zoltan BOROS AU - Arpad SZAZ TI - Infimum and supremum completeness properties of ordered sets without axioms JO - Analele Universităţii "Ovidius" Constanţa Seria Matematică PY - 2008 VL - XVI IS - 2 UR - http://geodesic.mathdoc.fr/item/ASUO_2008_XVI_2_a5/ ID - ASUO_2008_XVI_2_a5 ER -
Zoltan BOROS; Arpad SZAZ . Infimum and supremum completeness properties of ordered sets without axioms. Analele Universităţii "Ovidius" Constanţa Seria Matematică, XVI (2008) no. 2. http://geodesic.mathdoc.fr/item/ASUO_2008_XVI_2_a5/