Infimum and supremum completeness properties of ordered sets without axioms
Analele Universităţii "Ovidius" Constanţa Seria Matematică, XVI (2008) no. 2.

Voir la notice de l'article provenant de la source Analele Stiintifice ale Universitatii Ovidius Constanta website

@article{ASUO_2008_XVI_2_a5,
     author = {
						Zoltan BOROS and Arpad SZAZ
						},
     title = {Infimum and supremum completeness properties of ordered sets without axioms},
     journal = {Analele Universit\u{a}\c{t}ii "Ovidius" Constan\c{t}a Seria Matematic\u{a}},
     publisher = {mathdoc},
     volume = {XVI},
     number = {2},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/ASUO_2008_XVI_2_a5/}
}
TY  - JOUR
AU  - 
						Zoltan BOROS
AU  - Arpad SZAZ
						
TI  - Infimum and supremum completeness properties of ordered sets without axioms
JO  - Analele Universităţii "Ovidius" Constanţa Seria Matematică
PY  - 2008
VL  - XVI
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ASUO_2008_XVI_2_a5/
ID  - ASUO_2008_XVI_2_a5
ER  - 
%0 Journal Article
%A 
						Zoltan BOROS
%A Arpad SZAZ
						
%T Infimum and supremum completeness properties of ordered sets without axioms
%J Analele Universităţii "Ovidius" Constanţa Seria Matematică
%D 2008
%V XVI
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ASUO_2008_XVI_2_a5/
%F ASUO_2008_XVI_2_a5
						Zoltan BOROS; Arpad SZAZ
						. Infimum and supremum completeness properties of ordered sets without axioms. Analele Universităţii "Ovidius" Constanţa Seria Matematică, XVI (2008) no. 2. http://geodesic.mathdoc.fr/item/ASUO_2008_XVI_2_a5/