Voir la notice de l'article provenant de la source Numdam
Let be a Stein space. We study compact subsets of that are structurally acyclic, i.e., , for all . We show i) that such compact sets are natural in the sense that the canonical map from into , the spectrum of the complex algebra , is bijective, and ii) that the set of interior points of is a domain of holomorphy in . Motivated by this we give an extensive account of examples of domains of holomorphy in non-normal Stein spaces and prove several properties, like hereditarity via the normalization map. Finally, a straightforward criterion of non-acyclicity is given in terms of general Hartogs figures.
@article{ASNSP_2013_5_12_3_665_0, author = {V\^aj\^aitu, Viorel}, title = {Compact sets with vanishing cohomology in {Stein} spaces and domains of holomorphy}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {665--685}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {3}, year = {2013}, mrnumber = {3137459}, zbl = {1278.32010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_3_665_0/} }
TY - JOUR AU - Vâjâitu, Viorel TI - Compact sets with vanishing cohomology in Stein spaces and domains of holomorphy JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 665 EP - 685 VL - 12 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_3_665_0/ LA - en ID - ASNSP_2013_5_12_3_665_0 ER -
%0 Journal Article %A Vâjâitu, Viorel %T Compact sets with vanishing cohomology in Stein spaces and domains of holomorphy %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 665-685 %V 12 %N 3 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_3_665_0/ %G en %F ASNSP_2013_5_12_3_665_0
Vâjâitu, Viorel. Compact sets with vanishing cohomology in Stein spaces and domains of holomorphy. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 3, pp. 665-685. http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_3_665_0/