Voir la notice de l'article provenant de la source Numdam
We prove a Carleson type estimate, in Lipschitz type domains, for non-negative solutions to a class of second order degenerate differential operators of Kolmogorov type of the form
where , . Our estimate is scale-invariant and generalizes previous results valid for second order uniformly parabolic equations to the class of operators considered.
@article{ASNSP_2013_5_12_2_439_0, author = {Cinti, Chiara and Nystr\"om, Kaj and Polidoro, Sergio}, title = {A {Carleson-type} estimate in {Lipschitz} type domains for non-negative solutions to {Kolmogorov} operators}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {439--465}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {2}, year = {2013}, mrnumber = {3114009}, zbl = {1277.35081}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_2_439_0/} }
TY - JOUR AU - Cinti, Chiara AU - Nyström, Kaj AU - Polidoro, Sergio TI - A Carleson-type estimate in Lipschitz type domains for non-negative solutions to Kolmogorov operators JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 439 EP - 465 VL - 12 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_2_439_0/ LA - en ID - ASNSP_2013_5_12_2_439_0 ER -
%0 Journal Article %A Cinti, Chiara %A Nyström, Kaj %A Polidoro, Sergio %T A Carleson-type estimate in Lipschitz type domains for non-negative solutions to Kolmogorov operators %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 439-465 %V 12 %N 2 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_2_439_0/ %G en %F ASNSP_2013_5_12_2_439_0
Cinti, Chiara; Nyström, Kaj; Polidoro, Sergio. A Carleson-type estimate in Lipschitz type domains for non-negative solutions to Kolmogorov operators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 2, pp. 439-465. http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_2_439_0/