Voir la notice de l'article provenant de la source Numdam
In this paper we derive some quantitative uniqueness estimates for the shallow shell equations. Our proof relies on appropriate Carleman estimates. For applications, we consider the size estimate inverse problem.
Di Cristo, Michele 1 ; Lin, Ching-Lung 2 ; Wang, Jenn-Nan 3
@article{ASNSP_2013_5_12_1_43_0, author = {Di Cristo, Michele and Lin, Ching-Lung and Wang, Jenn-Nan}, title = {Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {43--92}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {1}, year = {2013}, mrnumber = {3088437}, zbl = {1272.35091}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_43_0/} }
TY - JOUR AU - Di Cristo, Michele AU - Lin, Ching-Lung AU - Wang, Jenn-Nan TI - Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 43 EP - 92 VL - 12 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_43_0/ LA - en ID - ASNSP_2013_5_12_1_43_0 ER -
%0 Journal Article %A Di Cristo, Michele %A Lin, Ching-Lung %A Wang, Jenn-Nan %T Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 43-92 %V 12 %N 1 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_43_0/ %G en %F ASNSP_2013_5_12_1_43_0
Di Cristo, Michele; Lin, Ching-Lung; Wang, Jenn-Nan. Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 43-92. http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_43_0/