Voir la notice de l'article provenant de la source Numdam
Let be a codimension-one foliation on : for each point we define as the order of the first non-zero jet of a holomorphic 1-form defining at . The singular set of is . We prove (main Theorem 1.2) that a foliation satisfying for all has a non-constant rational first integral. Using this fact we are able to prove that any foliation of degree-three on , with , is either the pull-back of a foliation on , or has a transverse affine structure with poles. This extends previous results for foliations of degree at most two.
Cerveau, Dominique 1 ; Lins Neto, Alcides 2
@article{ASNSP_2013_5_12_1_1_0, author = {Cerveau, Dominique and Lins Neto, Alcides}, title = {A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {1--41}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {1}, year = {2013}, mrnumber = {3088436}, zbl = {1267.32030}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_1_0/} }
TY - JOUR AU - Cerveau, Dominique AU - Lins Neto, Alcides TI - A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 1 EP - 41 VL - 12 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_1_0/ LA - en ID - ASNSP_2013_5_12_1_1_0 ER -
%0 Journal Article %A Cerveau, Dominique %A Lins Neto, Alcides %T A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 1-41 %V 12 %N 1 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_1_0/ %G en %F ASNSP_2013_5_12_1_1_0
Cerveau, Dominique; Lins Neto, Alcides. A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 1-41. http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_1_0/