A structural theorem for codimension-one foliations on , , with an application to degree-three foliations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 1-41
Voir la notice de l'article provenant de la source Numdam
Let be a codimension-one foliation on : for each point we define as the order of the first non-zero jet of a holomorphic 1-form defining at . The singular set of is . We prove (main Theorem 1.2) that a foliation satisfying for all has a non-constant rational first integral. Using this fact we are able to prove that any foliation of degree-three on , with , is either the pull-back of a foliation on , or has a transverse affine structure with poles. This extends previous results for foliations of degree at most two.
Publié le :
Classification :
37F75, 34M45
Affiliations des auteurs :
Cerveau, Dominique 1 ; Lins Neto, Alcides 2
@article{ASNSP_2013_5_12_1_1_0,
author = {Cerveau, Dominique and Lins Neto, Alcides},
title = {A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {1--41},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 12},
number = {1},
year = {2013},
mrnumber = {3088436},
zbl = {1267.32030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_1_0/}
}
TY - JOUR
AU - Cerveau, Dominique
AU - Lins Neto, Alcides
TI - A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2013
SP - 1
EP - 41
VL - 12
IS - 1
PB - Scuola Normale Superiore, Pisa
UR - http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_1_0/
LA - en
ID - ASNSP_2013_5_12_1_1_0
ER -
%0 Journal Article
%A Cerveau, Dominique
%A Lins Neto, Alcides
%T A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2013
%P 1-41
%V 12
%N 1
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_1_0/
%G en
%F ASNSP_2013_5_12_1_1_0
Cerveau, Dominique; Lins Neto, Alcides. A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 1-41. http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_1_0/
