A structural theorem for codimension-one foliations on n , n3, with an application to degree-three foliations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 1-41

Voir la notice de l'article provenant de la source Numdam

Let be a codimension-one foliation on n : for each point p n we define 𝒥(,p) as the order of the first non-zero jet j p k (ω) of a holomorphic 1-form ω defining at p. The singular set of is sing()={p n |𝒥(,p)1}. We prove (main Theorem 1.2) that a foliation satisfying 𝒥(,p)1 for all p n has a non-constant rational first integral. Using this fact we are able to prove that any foliation of degree-three on n , with n3, is either the pull-back of a foliation on 2 , or has a transverse affine structure with poles. This extends previous results for foliations of degree at most two.

Publié le :
Classification : 37F75, 34M45

Cerveau, Dominique 1 ; Lins Neto, Alcides 2

1 Institut Universitaire de France & IRMAR Campus de Beaulieu 35042, Rennes Cedex, France
2 Instituto de Matemática Pura e Aplicada Estrada Dona Castorina 110 Rio de Janeiro, Brasil
@article{ASNSP_2013_5_12_1_1_0,
     author = {Cerveau, Dominique and Lins Neto, Alcides},
     title = {A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {1--41},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 12},
     number = {1},
     year = {2013},
     mrnumber = {3088436},
     zbl = {1267.32030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_1_0/}
}
TY  - JOUR
AU  - Cerveau, Dominique
AU  - Lins Neto, Alcides
TI  - A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2013
SP  - 1
EP  - 41
VL  - 12
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_1_0/
LA  - en
ID  - ASNSP_2013_5_12_1_1_0
ER  - 
%0 Journal Article
%A Cerveau, Dominique
%A Lins Neto, Alcides
%T A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2013
%P 1-41
%V 12
%N 1
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_1_0/
%G en
%F ASNSP_2013_5_12_1_1_0
Cerveau, Dominique; Lins Neto, Alcides. A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 1-41. http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_1_0/