Non-divergence form parabolic equations associated with non-commuting vector fields: boundary behavior of nonnegative solutions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 2, pp. 437-474

Voir la notice de l'article provenant de la source Numdam

In a cylinder Ω T =Ω×(0,T) + n+1 we study the boundary behavior of nonnegative solutions of second order parabolic equations of the form

Hu= i,j=1 m a ij (x,t)X i X j u- t u=0,(x,t) + n+1 ,

where X={X 1 ,...,X m } is a system of C vector fields in n satisfying Hörmander’s rank condition (1.2), and Ω is a non-tangentially accessible domain with respect to the Carnot-Carathéodory distance d induced by X. Concerning the matrix-valued function A={a ij }, we assume that it is real, symmetric and uniformly positive definite. Furthermore, we suppose that its entries a ij are Hölder continuous with respect to the parabolic distance associated with d. Our main results are: 1) a backward Harnack inequality for nonnegative solutions vanishing on the lateral boundary (Theorem 1.1); 2) the Hölder continuity up to the boundary of the quotient of two nonnegative solutions which vanish continuously on a portion of the lateral boundary (Theorem 1.2); 3) the doubling property for the parabolic measure associated with the operator H (Theorem 1.3). These results generalize to the subelliptic setting of the present paper, those in Lipschitz cylinders by Fabes, Safonov and Yuan in [20,39]. With one proviso: in those papers the authors assume that the coefficients a ij be only bounded and measurable, whereas we assume Hölder continuity with respect to the intrinsic parabolic distance.

Publié le :
Classification : 31C05, 35C15, 65N99

Frentz, Marie 1 ; Garofalo, Nicola 2 ; Götmark, Elin 3 ; Munive, Isidro 2 ; Nyström, Kaj 4

1 Department of Mathematicsand Mathematical Statistics Umeå University S-90187 Umeå, Sweden
2 Department of Mathematics Purdue University West Lafayette IN 47907-1968, USA
3 Department of Mathematics and Mathematical Statistics Umeå University S-90187 Umeå, Sweden
4 Department of Mathematics Uppsala University S-751 06 Uppsala, Sweden
@article{ASNSP_2012_5_11_2_437_0,
     author = {Frentz, Marie and Garofalo, Nicola and G\"otmark, Elin and Munive, Isidro and Nystr\"om, Kaj},
     title = {Non-divergence form parabolic equations associated with non-commuting vector fields: boundary behavior of nonnegative solutions},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {437--474},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 11},
     number = {2},
     year = {2012},
     mrnumber = {3011998},
     zbl = {1258.31005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_2_437_0/}
}
TY  - JOUR
AU  - Frentz, Marie
AU  - Garofalo, Nicola
AU  - Götmark, Elin
AU  - Munive, Isidro
AU  - Nyström, Kaj
TI  - Non-divergence form parabolic equations associated with non-commuting vector fields: boundary behavior of nonnegative solutions
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2012
SP  - 437
EP  - 474
VL  - 11
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_2_437_0/
LA  - en
ID  - ASNSP_2012_5_11_2_437_0
ER  - 
%0 Journal Article
%A Frentz, Marie
%A Garofalo, Nicola
%A Götmark, Elin
%A Munive, Isidro
%A Nyström, Kaj
%T Non-divergence form parabolic equations associated with non-commuting vector fields: boundary behavior of nonnegative solutions
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2012
%P 437-474
%V 11
%N 2
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_2_437_0/
%G en
%F ASNSP_2012_5_11_2_437_0
Frentz, Marie; Garofalo, Nicola; Götmark, Elin; Munive, Isidro; Nyström, Kaj. Non-divergence form parabolic equations associated with non-commuting vector fields: boundary behavior of nonnegative solutions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 2, pp. 437-474. http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_2_437_0/