Metric currents, differentiable structures, and Carnot groups
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 2, pp. 259-302

Voir la notice de l'article provenant de la source Numdam

We examine the theory of metric currents of Ambrosio and Kirchheim in the setting of spaces admitting differentiable structures in the sense of Cheeger and Keith. We prove that metric forms which vanish in the sense of Cheeger on a set must also vanish when paired with currents concentrated along that set. From this we deduce a generalization of the chain rule, and show that currents of absolutely continuous mass are given by integration against measurable k-vector fields. We further prove that if the underlying metric space is a Carnot group with its Carnot-Carathéodory distance, then every metric current T satisfies T θ =0 and T dθ =0, whenever θΩ1(𝔾) annihilates the horizontal bundle of 𝔾. Moreover, this condition is necessary and sufficient for a metric current with respect to the Riemannian metric to extend to one with respect to the Carnot-Carathéodory metric, provided the current either is locally normal, or has absolutely continuous mass.

Publié le :
Classification : 30L99, 49Q15

Williams, Marshall 1

1 Department of Mathematics and Statistics University of Jyväskyä P.O. Box 35 FI – 40014
@article{ASNSP_2012_5_11_2_259_0,
     author = {Williams, Marshall},
     title = {Metric currents, differentiable structures, and {Carnot} groups},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {259--302},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 11},
     number = {2},
     year = {2012},
     mrnumber = {3011992},
     zbl = {1258.30029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_2_259_0/}
}
TY  - JOUR
AU  - Williams, Marshall
TI  - Metric currents, differentiable structures, and Carnot groups
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2012
SP  - 259
EP  - 302
VL  - 11
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_2_259_0/
LA  - en
ID  - ASNSP_2012_5_11_2_259_0
ER  - 
%0 Journal Article
%A Williams, Marshall
%T Metric currents, differentiable structures, and Carnot groups
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2012
%P 259-302
%V 11
%N 2
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_2_259_0/
%G en
%F ASNSP_2012_5_11_2_259_0
Williams, Marshall. Metric currents, differentiable structures, and Carnot groups. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 2, pp. 259-302. http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_2_259_0/