Ordinary holomorphic webs of codimension one
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 1, pp. 197-214

Voir la notice de l'article provenant de la source Numdam

To any d-web of codimension one on a holomorphic n-dimensional manifold M (d>n), we associate an analytic subset S of M. We call ordinary the webs for which S has a dimension at most n-1 or is empty. This condition is generically satisfied, at least at the level of germs.

We prove that the rank of an ordinary d-web has an upper-bound π ' (n,d) which, for n3, is strictly smaller than the bound π(n,d) proved by Chern, π(n,d) denoting the Castelnuovo’s number. This bound is optimal. Setting c(n,h)=n-1+hh, let k 0 be the integer such that c(n,k 0 )d<c(n,k 0 +1). The number π ' (n,d) is then equal

  • to 0 for d<c(n,2),
  • and to h=1 k 0 d - c ( n , h ) for dc(n,2).

Moreover, if d is precisely equal to c(n,k 0 ), we define off S a holomorphic connection on a holomorphic bundle of rank π ' (n,d), such that the set of Abelian relations off S is isomorphic to the set of holomorphic sections of with vanishing covariant derivative: the curvature of this connection, which generalizes the Blaschke curvature, is then an obstruction for the rank of the web to reach the value π ' (n,d).

When n=2, S is always empty so that any web is ordinary, π ' (2,d)=π(2,d), and any d may be written c(2,k 0 ): we recover the results given in [9].

Publié le :
Classification : 53A60, 14C21, 32S65

Cavalier, Vincent  ; Lehmann, Daniel 1

1 4 rue Becagrun 30980 Saint Dionisy, France
@article{ASNSP_2012_5_11_1_197_0,
     author = {Cavalier, Vincent and Lehmann, Daniel},
     title = {Ordinary holomorphic webs of codimension one},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {197--214},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 11},
     number = {1},
     year = {2012},
     mrnumber = {2953049},
     zbl = {1244.53014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_1_197_0/}
}
TY  - JOUR
AU  - Cavalier, Vincent
AU  - Lehmann, Daniel
TI  - Ordinary holomorphic webs of codimension one
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2012
SP  - 197
EP  - 214
VL  - 11
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_1_197_0/
LA  - en
ID  - ASNSP_2012_5_11_1_197_0
ER  - 
%0 Journal Article
%A Cavalier, Vincent
%A Lehmann, Daniel
%T Ordinary holomorphic webs of codimension one
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2012
%P 197-214
%V 11
%N 1
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_1_197_0/
%G en
%F ASNSP_2012_5_11_1_197_0
Cavalier, Vincent; Lehmann, Daniel. Ordinary holomorphic webs of codimension one. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 1, pp. 197-214. http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_1_197_0/