Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 3, pp. 531-560

Voir la notice de l'article provenant de la source Numdam

We complete the known results on the Cauchy problem in Sobolev spaces for the KdV-Burgers equation by proving that this equation is well-posed in H -1 () with a solution-map that is analytic from H -1 () to C([0,T];H -1 ()) whereas it is ill-posed in H s (), as soon as s<-1, in the sense that the flow-map u 0 u(t) cannot be continuous from H s () to even 𝒟 ' () at any fixed t>0 small enough. As far as we know, this is the first result of this type for a dispersive-dissipative equation. The framework we develop here should be useful to prove similar results for other dispersive-dissipative models.

Publié le :
Classification : 35E15, 35M11, 35Q53, 35Q60

Molinet, Luc 1 ; Vento, Stéphane 2, 3, 4

1 Laboratoire de Mathématiques et Physique Théorique Université François Rabelais Tours Fédération Denis Poisson-CNRS Parc Grandmont, 37200 Tours, France
2 L.A.G.A., Institut Galilée Université Paris 13 93430 Villetaneuse, France
3 Laboratoire de Mathématiques et Physique Théorique Université François Rabelais Tours Fédération Denis Poisson-CNRS Parc Grandmont, 37200 Tours, France Luc.Molinet@lmpt.univ-tours.fr
4 L.A.G.A., Institut Galilée Université Paris 13 93430 Villetaneuse, France vento@math.univ-paris13.fr
@article{ASNSP_2011_5_10_3_531_0,
     author = {Molinet, Luc and Vento, St\'ephane},
     title = {Sharp ill-posedness and well-posedness results for the {KdV-Burgers} equation: the real line case},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {531--560},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {3},
     year = {2011},
     mrnumber = {2905378},
     zbl = {1238.35136},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_531_0/}
}
TY  - JOUR
AU  - Molinet, Luc
AU  - Vento, Stéphane
TI  - Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2011
SP  - 531
EP  - 560
VL  - 10
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_531_0/
LA  - en
ID  - ASNSP_2011_5_10_3_531_0
ER  - 
%0 Journal Article
%A Molinet, Luc
%A Vento, Stéphane
%T Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2011
%P 531-560
%V 10
%N 3
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_531_0/
%G en
%F ASNSP_2011_5_10_3_531_0
Molinet, Luc; Vento, Stéphane. Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 3, pp. 531-560. http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_531_0/