Maximizers for the Strichartz norm for small solutions of mass-critical NLS
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 2, pp. 427-476

Voir la notice de l'article provenant de la source Numdam

Consider the mass-critical nonlinear Schrödinger equations in both focusing and defocusing cases for initial data in L 2 in space dimension N. By Strichartz inequality, solutions to the corresponding linear problem belong to a global L p space in the time and space variables, where p=2+4 N. In 1D and 2D, the best constant for the Strichartz inequality was computed by D. Foschi who has also shown that the maximizers are the solutions with Gaussian initial data.

Solutions to the nonlinear problem with small initial data in L 2 are globally defined and belong to the same global L p space. In this work we show that the maximum of the L p norm is attained for a given small mass. In addition, in 1D and 2D, we show that the maximizer is unique and obtain a precise estimate of the maximum. In order to prove this we show that the maximum for the linear problem in 1D and 2D is nondegenerated.

Publié le :
Classification : 35Q55, 35P25, 35B50, 35B45

Duyckaerts, Thomas 1 ; Merle, Frank 1 ; Roudenko, Svetlana 2

1 Département de Mathématiques Université de Cergy-Pontoise Site de Saint Martin 2, avenue Adolphe Chauvin 95302 Cergy-Pontoise Cedex, France
2 Department of Mathematics 2115 G. Street NW The George Washington University Washington, DC 20052, USA
@article{ASNSP_2011_5_10_2_427_0,
     author = {Duyckaerts, Thomas and Merle, Frank and Roudenko, Svetlana},
     title = {Maximizers for the {Strichartz} norm for small solutions of mass-critical {NLS}},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {427--476},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {2},
     year = {2011},
     mrnumber = {2856155},
     zbl = {1247.35142},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_427_0/}
}
TY  - JOUR
AU  - Duyckaerts, Thomas
AU  - Merle, Frank
AU  - Roudenko, Svetlana
TI  - Maximizers for the Strichartz norm for small solutions of mass-critical NLS
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2011
SP  - 427
EP  - 476
VL  - 10
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_427_0/
LA  - en
ID  - ASNSP_2011_5_10_2_427_0
ER  - 
%0 Journal Article
%A Duyckaerts, Thomas
%A Merle, Frank
%A Roudenko, Svetlana
%T Maximizers for the Strichartz norm for small solutions of mass-critical NLS
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2011
%P 427-476
%V 10
%N 2
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_427_0/
%G en
%F ASNSP_2011_5_10_2_427_0
Duyckaerts, Thomas; Merle, Frank; Roudenko, Svetlana. Maximizers for the Strichartz norm for small solutions of mass-critical NLS. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 2, pp. 427-476. http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_427_0/