Rational singularities and quotients by holomorphic group actions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 2, pp. 413-426
Voir la notice de l'article provenant de la source Numdam
We prove that rational and -rational singularities of complex spaces are stable under taking quotients by holomorphic actions of reductive and compact Lie groups. This extends a result of Boutot to the analytic category and yields a refinement of his result in the algebraic category. As one of the main technical tools vanishing theorems for cohomology groups with support on fibres of resolutions are proven.
Publié le :
Classification :
32M05, 32S05, 32C36, 14L30
Affiliations des auteurs :
Greb, Daniel 1
@article{ASNSP_2011_5_10_2_413_0,
author = {Greb, Daniel},
title = {Rational singularities and quotients by holomorphic group actions},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {413--426},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 10},
number = {2},
year = {2011},
mrnumber = {2856154},
zbl = {1241.32017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_413_0/}
}
TY - JOUR AU - Greb, Daniel TI - Rational singularities and quotients by holomorphic group actions JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 413 EP - 426 VL - 10 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_413_0/ LA - en ID - ASNSP_2011_5_10_2_413_0 ER -
%0 Journal Article %A Greb, Daniel %T Rational singularities and quotients by holomorphic group actions %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 413-426 %V 10 %N 2 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_413_0/ %G en %F ASNSP_2011_5_10_2_413_0
Greb, Daniel. Rational singularities and quotients by holomorphic group actions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 2, pp. 413-426. http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_2_413_0/